These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Endogenous electric field accelerates phenol degradation in bioelectrochemical systems with reduced electrode spacing. Tian L; Liao C; Yan X; Zhao Q; Wang Z; Li T; Li N; Wang X J Hazard Mater; 2023 Jan; 442():130043. PubMed ID: 36182882 [TBL] [Abstract][Full Text] [Related]
43. Coordinated response of Au-NPs/rGO modified electroactive biofilms under phenolic compounds shock: Comprehensive analysis from architecture, composition, and activity. Li B; Sun JD; Tang C; Zhou J; Wu XY; Jia HH; Wei P; Zhang YF; Yong XY Water Res; 2021 Feb; 189():116589. PubMed ID: 33166922 [TBL] [Abstract][Full Text] [Related]
44. Enhancement of wastewater treatment under low temperature using novel electrochemical active biofilms constructed wetland. Wang J; Li Y; Wang W; Wu H; Kong F; Wang S J Environ Manage; 2022 Jun; 312():114913. PubMed ID: 35306418 [TBL] [Abstract][Full Text] [Related]
45. Biosynthetic FeS/BC hybrid particles enhanced the electroactive bacteria enrichment in microbial electrochemical systems. Li Z; Zhang P; Qiu Y; Zhang Z; Wang X; Yu Y; Feng Y Sci Total Environ; 2021 Mar; 762():143142. PubMed ID: 33168253 [TBL] [Abstract][Full Text] [Related]
46. Temporal-spatial changes in viabilities and electrochemical properties of anode biofilms. Sun D; Cheng S; Wang A; Li F; Logan BE; Cen K Environ Sci Technol; 2015 Apr; 49(8):5227-35. PubMed ID: 25810405 [TBL] [Abstract][Full Text] [Related]
47. Electrochemical characterization of Geobacter lovleyi identifies limitations of microbial fuel cell performance in constructed wetlands. Corbella C; Steidl RP; Puigagut J; Reguera G Int Microbiol; 2017 Jun; 20(2):55-64. PubMed ID: 28617523 [TBL] [Abstract][Full Text] [Related]
48. Single-cell metagenomics and metagenomics approaches reveal extracellular electron transfer of psychrophilic electroactive biofilms. Yang Y; Fang A; Feng K; Zhang D; Zhou H; Xing D Sci Total Environ; 2022 Aug; 836():155606. PubMed ID: 35504378 [TBL] [Abstract][Full Text] [Related]
49. Extracellular Polymeric Substances from Geobacter sulfurreducens Biofilms in Microbial Fuel Cells. Stöckl M; Teubner NC; Holtmann D; Mangold KM; Sand W ACS Appl Mater Interfaces; 2019 Mar; 11(9):8961-8968. PubMed ID: 30730701 [TBL] [Abstract][Full Text] [Related]
50. Electroactive Biofilms of Activated Sludge Microorganisms on a Nanostructured Surface as the Basis for a Highly Sensitive Biochemical Oxygen Demand Biosensor. Kurbanalieva S; Arlyapov V; Kharkova A; Perchikov R; Kamanina O; Melnikov P; Popova N; Machulin A; Tarasov S; Saverina E; Vereshchagin A; Reshetilov A Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015810 [TBL] [Abstract][Full Text] [Related]
51. The performance of microbial anodes in municipal wastewater: Pre-grown multispecies biofilm vs. natural inocula. Madjarov J; Prokhorova A; Messinger T; Gescher J; Kerzenmacher S Bioresour Technol; 2016 Dec; 221():165-171. PubMed ID: 27639235 [TBL] [Abstract][Full Text] [Related]
52. Electroactive biofilms on surface functionalized anodes: The anode respiring behavior of a novel electroactive bacterium, Desulfuromonas acetexigens. Katuri KP; Kamireddy S; Kavanagh P; Muhammad A; Conghaile PÓ; Kumar A; Saikaly PE; Leech D Water Res; 2020 Oct; 185():116284. PubMed ID: 32818731 [TBL] [Abstract][Full Text] [Related]
53. Growth and current production of mixed culture anodic biofilms remain unaffected by sub-microscale surface roughness. Pierra M; Golozar M; Zhang X; Prévoteau A; De Volder M; Reynaerts D; Rabaey K Bioelectrochemistry; 2018 Aug; 122():213-220. PubMed ID: 29694942 [TBL] [Abstract][Full Text] [Related]
54. Spatial-type skeleton induced Geobacter enrichment and tailored bio-capacitance of electroactive bioanode for efficient electron transfer in microbial fuel cells. Li C; Feng Y; Liang D; Zhang L; Tian Y; Yadav RS; He W Sci Total Environ; 2022 May; 821():153123. PubMed ID: 35051486 [TBL] [Abstract][Full Text] [Related]
55. Anodic biofilms as the interphase for electroactive bacterial growth on carbon veil. Artyushkova K; Roizman D; Santoro C; Doyle LE; Fatima Mohidin A; Atanassov P; Marsili E Biointerphases; 2016 Sep; 11(3):031013. PubMed ID: 27609094 [TBL] [Abstract][Full Text] [Related]
56. Continuous shear stress alters metabolism, mass-transport, and growth in electroactive biofilms independent of surface substrate transport. Jones AD; Buie CR Sci Rep; 2019 Feb; 9(1):2602. PubMed ID: 30796283 [TBL] [Abstract][Full Text] [Related]
57. Insights into the syntrophic microbial electrochemical oxidation of toluene: a combined chemical, electrochemical, taxonomical, functional gene-based, and metaproteomic approach. Tucci M; Viggi CC; Crognale S; Matturro B; Rossetti S; Capriotti AL; Cavaliere C; Cerrato A; Montone CM; Harnisch F; Aulenta F Sci Total Environ; 2022 Dec; 850():157919. PubMed ID: 35964739 [TBL] [Abstract][Full Text] [Related]
58. Potassium channel mediates electroactive biofilm formation via recruiting planktonic Geobacter cells. Jing X; Chen S; Liu X; Yang Y; Rensing C; Zhou S Sci Total Environ; 2022 Dec; 850():158035. PubMed ID: 35981588 [TBL] [Abstract][Full Text] [Related]
59. A novel bioelectrochemical BOD sensor operating with voltage input. Modin O; Wilén BM Water Res; 2012 Nov; 46(18):6113-20. PubMed ID: 23021520 [TBL] [Abstract][Full Text] [Related]
60. An electroactive biofilm-based biosensor for water safety: Pollutants detection and early-warning. Qi X; Wang S; Li T; Wang X; Jiang Y; Zhou Y; Zhou X; Huang X; Liang P Biosens Bioelectron; 2021 Feb; 173():112822. PubMed ID: 33221512 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]