These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 37249672)
1. Modeling the dynamic changes in Plasmopara viticola sporangia concentration based on LSTM and understanding the impact of relative factor variability. Hui W; Shuyi Y; Wei Z; Junbo P; Haiyun T; Chunhao L; Jiye Y Int J Biometeorol; 2023 Jun; 67(6):993-1002. PubMed ID: 37249672 [TBL] [Abstract][Full Text] [Related]
2. Production and release of asexual sporangia in Plasmopara viticola. Caffi T; Gilardi G; Monchiero M; Rossi V Phytopathology; 2013 Jan; 103(1):64-73. PubMed ID: 22950738 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of the Characteristics and Infectivity of the Secondary Inoculum Produced by Massi F; Marcianò D; Russo G; Stuknytė M; Arioli S; Mora D; Toffolatti SL Appl Environ Microbiol; 2022 Nov; 88(21):e0101022. PubMed ID: 36250698 [No Abstract] [Full Text] [Related]
4. Rapid and multiregional adaptation to host partial resistance in a plant pathogenic oomycete: evidence from European populations of Plasmopara viticola, the causal agent of grapevine downy mildew. Delmotte F; Mestre P; Schneider C; Kassemeyer HH; Kozma P; Richart-Cervera S; Rouxel M; Delière L Infect Genet Evol; 2014 Oct; 27():500-8. PubMed ID: 24184095 [TBL] [Abstract][Full Text] [Related]
5. LAMP for in-field quantitative assessments of airborne grapevine downy mildew inoculum. Douillet A; Laurent B; Beslay J; Massot M; Raynal M; Delmotte F J Appl Microbiol; 2022 Dec; 133(6):3404-3412. PubMed ID: 35977551 [TBL] [Abstract][Full Text] [Related]
6. Evidence for Differences in the Temporal Progress of Carisse O; Van der Heyden H; Tremblay DM; Hébert PO; Delmotte F Plant Dis; 2021 Jun; 105(6):1666-1676. PubMed ID: 33147122 [TBL] [Abstract][Full Text] [Related]
7. First Report of QoI-Resistant Downy Mildew (Plasmopara viticola) of Grape (Vitis vinifera cv. Vidal Blanc) in Kentucky. Gauthier NAW; Amsden B Plant Dis; 2014 Feb; 98(2):276. PubMed ID: 30708752 [TBL] [Abstract][Full Text] [Related]
8. Grapevine Rpv3-, Rpv10- and Rpv12-mediated defense responses against Plasmopara viticola and the impact of their deployment on fungicide use in viticulture. Wingerter C; Eisenmann B; Weber P; Dry I; Bogs J BMC Plant Biol; 2021 Oct; 21(1):470. PubMed ID: 34649524 [TBL] [Abstract][Full Text] [Related]
9. Lysobacter capsici AZ78 produces cyclo(L-Pro-L-Tyr), a 2,5-diketopiperazine with toxic activity against sporangia of Phytophthora infestans and Plasmopara viticola. Puopolo G; Cimmino A; Palmieri MC; Giovannini O; Evidente A; Pertot I J Appl Microbiol; 2014 Oct; 117(4):1168-80. PubMed ID: 25066530 [TBL] [Abstract][Full Text] [Related]
10. Hyperspectral phenotyping of the reaction of grapevine genotypes to Plasmopara viticola. Oerke EC; Herzog K; Toepfer R J Exp Bot; 2016 Oct; 67(18):5529-5543. PubMed ID: 27567365 [TBL] [Abstract][Full Text] [Related]
11. The host guides morphogenesis and stomatal targeting in the grapevine pathogen Plasmopara viticola. Kiefer B; Riemann M; Büche C; Kassemeyer HH; Nick P Planta; 2002 Jul; 215(3):387-93. PubMed ID: 12111219 [TBL] [Abstract][Full Text] [Related]
12. Competition Between Mouafo-Tchinda RA; Fall ML; Beaulieu C; Carisse O Plant Dis; 2022 Nov; 106(11):2866-2875. PubMed ID: 35536207 [TBL] [Abstract][Full Text] [Related]
13. Development and application of loop-mediated isothermal amplification (LAMP) for detection of Plasmopara viticola. Kong X; Qin W; Huang X; Kong F; Schoen CD; Feng J; Wang Z; Zhang H Sci Rep; 2016 Jul; 6():28935. PubMed ID: 27363943 [TBL] [Abstract][Full Text] [Related]
14. Can Spore Sampler Data Be Used to Predict Brischetto C; Bove F; Languasco L; Rossi V Front Plant Sci; 2020; 11():1187. PubMed ID: 32903587 [TBL] [Abstract][Full Text] [Related]
15. Identification of effector genes from the phytopathogenic Oomycete Plasmopara viticola through the analysis of gene expression in germinated zoospores. Mestre P; Piron MC; Merdinoglu D Fungal Biol; 2012 Jul; 116(7):825-35. PubMed ID: 22749169 [TBL] [Abstract][Full Text] [Related]
16. cDNA-AFLP analysis of plant and pathogen genes expressed in grapevine infected with Plasmopara viticola. Polesani M; Desario F; Ferrarini A; Zamboni A; Pezzotti M; Kortekamp A; Polverari A BMC Genomics; 2008 Mar; 9():142. PubMed ID: 18366764 [TBL] [Abstract][Full Text] [Related]
17. Potential Biocontrol Microorganisms Causing Attenuated Pathogenicity in Shi X; Shen H; Wang Y; Yang X; Shi R; Tan W; Ran L Phytopathology; 2024 Jun; 114(6):1226-1236. PubMed ID: 38205803 [TBL] [Abstract][Full Text] [Related]
18. Phylogenetic and experimental evidence for host-specialized cryptic species in a biotrophic oomycete. Rouxel M; Mestre P; Comont G; Lehman BL; Schilder A; Delmotte F New Phytol; 2013 Jan; 197(1):251-263. PubMed ID: 23153246 [TBL] [Abstract][Full Text] [Related]
19. New insights from short and long reads sequencing to explore cytochrome b variants in Plasmopara viticola populations collected from vineyards and related to resistance to complex III inhibitors. Cherrad S; Gillet B; Dellinger J; Bellaton L; Roux P; Hernandez C; Steva H; Perrier L; Vacher S; Hughes S PLoS One; 2023; 18(1):e0268385. PubMed ID: 36656908 [TBL] [Abstract][Full Text] [Related]