These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37249687)

  • 1. A multi-model forecasting approach for solid waste generation by integrating demographic and socioeconomic factors: a case study of Prayagraj, India.
    Srivastava A; Jha PK
    Environ Monit Assess; 2023 May; 195(6):768. PubMed ID: 37249687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis and forecasting of municipal solid waste in Nankana City using geo-spatial techniques.
    Mahmood S; Sharif F; Rahman AU; Khan AU
    Environ Monit Assess; 2018 Apr; 190(5):275. PubMed ID: 29644486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electricity Generation Forecast of Shanghai Municipal Solid Waste Based on Bidirectional Long Short-Term Memory Model.
    Liu B; Zhang N; Wang L; Zhang X
    Int J Environ Res Public Health; 2022 May; 19(11):. PubMed ID: 35682200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forecasting municipal solid waste in Lithuania by incorporating socioeconomic and geographical factors.
    Paulauskaite-Taraseviciene A; Raudonis V; Sutiene K
    Waste Manag; 2022 Mar; 140():31-39. PubMed ID: 35033802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forecasting of municipal solid waste generation using non-linear autoregressive (NAR) neural models.
    Sunayana ; Kumar S; Kumar R
    Waste Manag; 2021 Feb; 121():206-214. PubMed ID: 33360819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long short-term memory neural network and improved particle swarm optimization-based modeling and scenario analysis for municipal solid waste generation in Shanghai, China.
    Wang D; Yuan YA; Ben Y; Luo H; Guo H
    Environ Sci Pollut Res Int; 2022 Oct; 29(46):69472-69490. PubMed ID: 35567684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid waste forecasting using modified ANFIS modeling.
    Younes MK; Nopiah ZM; Basri NE; Basri H; Abushammala MF; K N A M
    J Air Waste Manag Assoc; 2015 Oct; 65(10):1229-38. PubMed ID: 26223583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forecasting municipal solid waste generation using artificial intelligence modelling approaches.
    Abbasi M; El Hanandeh A
    Waste Manag; 2016 Oct; 56():13-22. PubMed ID: 27297046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forecasting of municipal solid waste quantity in a developing country using multivariate grey models.
    Intharathirat R; Abdul Salam P; Kumar S; Untong A
    Waste Manag; 2015 May; 39():3-14. PubMed ID: 25704925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China.
    Xu L; Gao P; Cui S; Liu C
    Waste Manag; 2013 Jun; 33(6):1324-31. PubMed ID: 23490364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of municipal solid waste generation using nonlinear autoregressive network.
    Younes MK; Nopiah ZM; Basri NE; Basri H; Abushammala MF; Maulud KN
    Environ Monit Assess; 2015 Dec; 187(12):753. PubMed ID: 26573690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of municipal solid waste generation using artificial neural network approach enhanced by structural break analysis.
    Adamović VM; Antanasijević DZ; Ristić MĐ; Perić-Grujić AA; Pocajt VV
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):299-311. PubMed ID: 27718111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forecasting municipal solid waste generation using prognostic tools and regression analysis.
    Ghinea C; Drăgoi EN; Comăniţă ED; Gavrilescu M; Câmpean T; Curteanu S; Gavrilescu M
    J Environ Manage; 2016 Nov; 182():80-93. PubMed ID: 27454099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Demand gap analysis of municipal solid waste landfill in Beijing: Based on the municipal solid waste generation.
    Liu B; Zhang L; Wang Q
    Waste Manag; 2021 Oct; 134():42-51. PubMed ID: 34407482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forecasting the Status of Municipal Waste in Smart Bins Using Deep Learning.
    Ahmed S; Mubarak S; Du JT; Wibowo S
    Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yard waste prediction from estimated municipal solid waste using the grey theory to achieve a zero-waste strategy.
    Islam MR; Kabir G; Ng KTW; Ali SM
    Environ Sci Pollut Res Int; 2022 Jul; 29(31):46859-46874. PubMed ID: 35171430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application and evaluation of forecasting methods for municipal solid waste generation in an Eastern-European city.
    Rimaityte I; Ruzgas T; Denafas G; Racys V; Martuzevicius D
    Waste Manag Res; 2012 Jan; 30(1):89-98. PubMed ID: 21382880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-site household waste generation forecasting using a deep learning approach.
    Cubillos M
    Waste Manag; 2020 Sep; 115():8-14. PubMed ID: 32707482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An empirical model for prediction of household solid waste generation rate - A case study of Dhanbad, India.
    Kumar A; Samadder SR
    Waste Manag; 2017 Oct; 68():3-15. PubMed ID: 28757221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid model for the prediction of municipal solid waste generation in Hangzhou, China.
    Zhang Z; Zhang Y; Wu D
    Waste Manag Res; 2019 Aug; 37(8):781-792. PubMed ID: 31264528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.