These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 37249867)

  • 1. Profiling the Epigenetic Landscape of the Spermatogonial Stem Cell-Part 1: Epigenomics Assays.
    Cheng K; McCarrey JR
    Methods Mol Biol; 2023; 2656():71-108. PubMed ID: 37249867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Profiling the Epigenetic Landscape of the Spermatogonial Stem Cell: Part 2-Computational Analysis of Epigenomics Data.
    Cheng K; McCarrey JR
    Methods Mol Biol; 2023; 2656():109-125. PubMed ID: 37249868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient chromatin accessibility mapping in situ by nucleosome-tethered tagmentation.
    Henikoff S; Henikoff JG; Kaya-Okur HS; Ahmad K
    Elife; 2020 Nov; 9():. PubMed ID: 33191916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide epigenomic profiling for biomarker discovery.
    Dirks RA; Stunnenberg HG; Marks H
    Clin Epigenetics; 2016; 8():122. PubMed ID: 27895806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ChIP-Atlas 2021 update: a data-mining suite for exploring epigenomic landscapes by fully integrating ChIP-seq, ATAC-seq and Bisulfite-seq data.
    Zou Z; Ohta T; Miura F; Oki S
    Nucleic Acids Res; 2022 Jul; 50(W1):W175-W182. PubMed ID: 35325188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preprocessing and Computational Analysis of Single-Cell Epigenomic Datasets.
    Lareau C; Kangeyan D; Aryee MJ
    Methods Mol Biol; 2019; 1935():187-202. PubMed ID: 30758828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin integration labeling for mapping DNA-binding proteins and modifications with low input.
    Handa T; Harada A; Maehara K; Sato S; Nakao M; Goto N; Kurumizaka H; Ohkawa Y; Kimura H
    Nat Protoc; 2020 Oct; 15(10):3334-3360. PubMed ID: 32807906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA Methylation Analysis.
    Feng L; Lou J
    Methods Mol Biol; 2019; 1894():181-227. PubMed ID: 30547463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Advances in assay for transposase-accessible chromatin with high-throughput sequencing].
    Wu J; Quan JP; Ye Y; Wu ZF; Yang J; Yang M; Zheng EQ
    Yi Chuan; 2020 Apr; 42(4):333-346. PubMed ID: 32312702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A High-Throughput Chromatin Immunoprecipitation Sequencing Approach to Study the Role of MYC on the Epigenetic Landscape.
    Fagnocchi L; Zippo A
    Methods Mol Biol; 2021; 2318():187-208. PubMed ID: 34019291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupled Single-Cell CRISPR Screening and Epigenomic Profiling Reveals Causal Gene Regulatory Networks.
    Rubin AJ; Parker KR; Satpathy AT; Qi Y; Wu B; Ong AJ; Mumbach MR; Ji AL; Kim DS; Cho SW; Zarnegar BJ; Greenleaf WJ; Chang HY; Khavari PA
    Cell; 2019 Jan; 176(1-2):361-376.e17. PubMed ID: 30580963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-phase capture and profiling of open chromatin by spatial ATAC.
    Llorens-Bobadilla E; Zamboni M; Marklund M; Bhalla N; Chen X; Hartman J; Frisén J; Ståhl PL
    Nat Biotechnol; 2023 Aug; 41(8):1085-1088. PubMed ID: 36604544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetic Application of ATAC-Seq Based on Tn5 Transposase Purification Technology.
    Li W; Tim Wu U; Cheng Y; Huang Y; Mao L; Sun M; Qiu C; Zhou L; Gao L
    Genet Res (Camb); 2022; 2022():8429207. PubMed ID: 36062065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin accessibility profiling by ATAC-seq.
    Grandi FC; Modi H; Kampman L; Corces MR
    Nat Protoc; 2022 Jun; 17(6):1518-1552. PubMed ID: 35478247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The application of next generation sequencing on epigenetic study].
    Shen S; Qu Y; Zhang J
    Yi Chuan; 2014 Mar; 36(3):256-75. PubMed ID: 24846966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATAC-seq Optimization for Cancer Epigenetics Research.
    Cooper M; Ray A; Bhattacharya A; Dhasarathy A; Takaku M
    J Vis Exp; 2022 Jun; (184):. PubMed ID: 35848835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. XL-DNase-seq: improved footprinting of dynamic transcription factors.
    Oh KS; Ha J; Baek S; Sung MH
    Epigenetics Chromatin; 2019 Jun; 12(1):30. PubMed ID: 31164146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Profiling Chromatin Landscape at High Resolution and Throughput with 2C-ChIP.
    Wang XQD; Cameron CJF; Segal D; Paquette D; Blanchette M; Dostie J
    Methods Mol Biol; 2021; 2157():127-157. PubMed ID: 32820402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ChIP-Atlas 3.0: a data-mining suite to explore chromosome architecture together with large-scale regulome data.
    Zou Z; Ohta T; Oki S
    Nucleic Acids Res; 2024 Jul; 52(W1):W45-W53. PubMed ID: 38749504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MOWChIP-seq for low-input and multiplexed profiling of genome-wide histone modifications.
    Zhu B; Hsieh YP; Murphy TW; Zhang Q; Naler LB; Lu C
    Nat Protoc; 2019 Dec; 14(12):3366-3394. PubMed ID: 31666743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.