These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 37249939)

  • 1. The Bethe-Salpeter QED Wave Equation for Bound-State Computations of Atoms and Molecules.
    Mátyus E; Ferenc D; Jeszenszki P; Margócsy Á
    ACS Phys Chem Au; 2023 May; 3(3):222-240. PubMed ID: 37249939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bound-State Relativistic Quantum Electrodynamics: A Perspective for Precision Physics with Atoms and Molecules.
    Nonn Á; Margócsy Á; Mátyus E
    J Chem Theory Comput; 2024 Jun; 20(11):4385-4395. PubMed ID: 38789399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QED corrections to the correlated relativistic energy: One-photon processes.
    Margócsy Á; Mátyus E
    J Chem Phys; 2024 May; 160(20):. PubMed ID: 38775449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explaining Homeopathy with Quantum Electrodynamics.
    Manzalini A; Galeazzi B
    Homeopathy; 2019 Aug; 108(3):169-176. PubMed ID: 30901775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding Polaritonic Chemistry from Ab Initio Quantum Electrodynamics.
    Ruggenthaler M; Sidler D; Rubio A
    Chem Rev; 2023 Oct; 123(19):11191-11229. PubMed ID: 37729114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective quantum electrodynamics: One-dimensional model of the relativistic hydrogen-like atom.
    Audinet T; Toulouse J
    J Chem Phys; 2023 Jun; 158(24):. PubMed ID: 37352423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An overview of methods for deriving the radiative transfer theory from the Maxwell equations. II: Approach based on the Dyson and Bethe-Salpeter equations.
    Doicu A; Mishchenko MI
    J Quant Spectrosc Radiat Transf; 2019 Feb; 224():25-36. PubMed ID: 30713354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variational Theory of Nonrelativistic Quantum Electrodynamics.
    Rivera N; Flick J; Narang P
    Phys Rev Lett; 2019 May; 122(19):193603. PubMed ID: 31144944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High precision atomic theory for Li and Be+: QED shifts and isotope shifts.
    Yan ZC; Nörtershäuser W; Drake GW
    Phys Rev Lett; 2008 Jun; 100(24):243002. PubMed ID: 18643580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the Bethe Logarithm: From Atom to Chemical Reaction.
    Ferenc D; Mátyus E
    J Phys Chem A; 2023 Jan; 127(3):627-633. PubMed ID: 36626594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matrix algorithms for solving (in)homogeneous bound state equations.
    Blank M; Krassnigg A
    Comput Phys Commun; 2011 Jul; 182(7):1391-1401. PubMed ID: 21760640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New aspects of quantum electrodynamics on electronic structure and dynamics.
    Tachibana A
    J Comput Chem; 2019 Jan; 40(2):316-327. PubMed ID: 30299560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Third-harmonic scattering optical activity: QED theory, symmetry considerations, and quantum chemistry applications in the framework of response theory.
    Bonvicini A; Champagne B
    J Chem Phys; 2023 Sep; 159(11):. PubMed ID: 37712789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testing quantum electrodynamics in extreme fields using helium-like uranium.
    Loetzsch R; Beyer HF; Duval L; Spillmann U; Banaś D; Dergham P; Kröger FM; Glorius J; Grisenti RE; Guerra M; Gumberidze A; Heß R; Hillenbrand PM; Indelicato P; Jagodzinski P; Lamour E; Lorentz B; Litvinov S; Litvinov YA; Machado J; Paul N; Paulus GG; Petridis N; Santos JP; Scheidel M; Sidhu RS; Steck M; Steydli S; Szary K; Trotsenko S; Uschmann I; Weber G; Stöhlker T; Trassinelli M
    Nature; 2024 Jan; 625(7996):673-678. PubMed ID: 38267680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementation of the Bethe-Salpeter equation in the TURBOMOLE program.
    Krause K; Klopper W
    J Comput Chem; 2017 Mar; 38(6):383-388. PubMed ID: 27925312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cavity QED with a Bose-Einstein condensate.
    Brennecke F; Donner T; Ritter S; Bourdel T; Köhl M; Esslinger T
    Nature; 2007 Nov; 450(7167):268-71. PubMed ID: 17994093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry.
    Nakatsuji H
    Acc Chem Res; 2012 Sep; 45(9):1480-90. PubMed ID: 22686372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solving the Schrödinger equation of atoms and molecules: Chemical-formula theory, free-complement chemical-formula theory, and intermediate variational theory.
    Nakatsuji H; Nakashima H; Kurokawa YI
    J Chem Phys; 2018 Sep; 149(11):114105. PubMed ID: 30243277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benchmarking the GW Approximation and Bethe-Salpeter Equation for Groups IB and IIB Atoms and Monoxides.
    Hung L; Bruneval F; Baishya K; Öğüt S
    J Chem Theory Comput; 2017 May; 13(5):2135-2146. PubMed ID: 28387124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio calculations of optical absorption spectra: solution of the Bethe-Salpeter equation within density matrix perturbation theory.
    Rocca D; Lu D; Galli G
    J Chem Phys; 2010 Oct; 133(16):164109. PubMed ID: 21033777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.