These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 37250041)
1. Catabolite repression control protein antagonist, a novel player in Sonnleitner E; Bassani F; Cianciulli Sesso A; Brear P; Lilic B; Davidovski L; Resch A; Luisi BF; Moll I; Bläsi U Front Microbiol; 2023; 14():1195558. PubMed ID: 37250041 [TBL] [Abstract][Full Text] [Related]
2. Regulation of Hfq by the RNA CrcZ in Pseudomonas aeruginosa carbon catabolite repression. Sonnleitner E; Bläsi U PLoS Genet; 2014 Jun; 10(6):e1004440. PubMed ID: 24945892 [TBL] [Abstract][Full Text] [Related]
3. Rewiring of Gene Expression in Rozner M; Nukarinen E; Wolfinger MT; Amman F; Weckwerth W; Bläsi U; Sonnleitner E Front Microbiol; 2022; 13():919539. PubMed ID: 35832820 [TBL] [Abstract][Full Text] [Related]
4. Interplay between the catabolite repression control protein Crc, Hfq and RNA in Hfq-dependent translational regulation in Pseudomonas aeruginosa. Sonnleitner E; Wulf A; Campagne S; Pei XY; Wolfinger MT; Forlani G; Prindl K; Abdou L; Resch A; Allain FH; Luisi BF; Urlaub H; Bläsi U Nucleic Acids Res; 2018 Feb; 46(3):1470-1485. PubMed ID: 29244160 [TBL] [Abstract][Full Text] [Related]
5. Distinctive Regulation of Carbapenem Susceptibility in Sonnleitner E; Pusic P; Wolfinger MT; Bläsi U Front Microbiol; 2020; 11():1001. PubMed ID: 32528439 [TBL] [Abstract][Full Text] [Related]
6. Stabilization of Hfq-mediated translational repression by the co-repressor Crc in Pseudomonas aeruginosa. Malecka EM; Bassani F; Dendooven T; Sonnleitner E; Rozner M; Albanese TG; Resch A; Luisi B; Woodson S; Bläsi U Nucleic Acids Res; 2021 Jul; 49(12):7075-7087. PubMed ID: 34139006 [TBL] [Abstract][Full Text] [Related]
7. The Pseudomonas aeruginosa CrcZ RNA interferes with Hfq-mediated riboregulation. Sonnleitner E; Prindl K; Bläsi U PLoS One; 2017; 12(7):e0180887. PubMed ID: 28686727 [TBL] [Abstract][Full Text] [Related]
8. Two small RNAs, CrcY and CrcZ, act in concert to sequester the Crc global regulator in Pseudomonas putida, modulating catabolite repression. Moreno R; Fonseca P; Rojo F Mol Microbiol; 2012 Jan; 83(1):24-40. PubMed ID: 22053874 [TBL] [Abstract][Full Text] [Related]
9. Crossing bacterial boundaries: The carbon catabolite repression system Crc-Hfq of Pseudomonas putida KT2440 as a tool to control translation in E. coli. Lu C; Ramalho TP; Bisschops MMM; Wijffels RH; Martins Dos Santos VAP; Weusthuis RA N Biotechnol; 2023 Nov; 77():20-29. PubMed ID: 37348756 [TBL] [Abstract][Full Text] [Related]
11. Harnessing Metabolic Regulation to Increase Hfq-Dependent Antibiotic Susceptibility in Pusic P; Sonnleitner E; Krennmayr B; Heitzinger DA; Wolfinger MT; Resch A; Bläsi U Front Microbiol; 2018; 9():2709. PubMed ID: 30473687 [TBL] [Abstract][Full Text] [Related]
12. The Pseudomonas aeruginosa catabolite repression control protein Crc is devoid of RNA binding activity. Milojevic T; Grishkovskaya I; Sonnleitner E; Djinovic-Carugo K; Bläsi U PLoS One; 2013; 8(5):e64609. PubMed ID: 23717639 [TBL] [Abstract][Full Text] [Related]
13. Rewiring the functional complexity between Crc, Hfq and sRNAs to regulate carbon catabolite repression in Pseudomonas. Bharwad K; Rajkumar S World J Microbiol Biotechnol; 2019 Aug; 35(9):140. PubMed ID: 31451938 [TBL] [Abstract][Full Text] [Related]
14. Small RNA as global regulator of carbon catabolite repression in Pseudomonas aeruginosa. Sonnleitner E; Abdou L; Haas D Proc Natl Acad Sci U S A; 2009 Dec; 106(51):21866-71. PubMed ID: 20080802 [TBL] [Abstract][Full Text] [Related]
15. Novel targets of the CbrAB/Crc carbon catabolite control system revealed by transcript abundance in Pseudomonas aeruginosa. Sonnleitner E; Valentini M; Wenner N; Haichar FZ; Haas D; Lapouge K PLoS One; 2012; 7(10):e44637. PubMed ID: 23115619 [TBL] [Abstract][Full Text] [Related]
16. The Crc and Hfq proteins of Pseudomonas putida cooperate in catabolite repression and formation of ribonucleic acid complexes with specific target motifs. Moreno R; Hernández-Arranz S; La Rosa R; Yuste L; Madhushani A; Shingler V; Rojo F Environ Microbiol; 2015 Jan; 17(1):105-18. PubMed ID: 24803210 [TBL] [Abstract][Full Text] [Related]
17. Unravelling the complexity and redundancy of carbon catabolic repression in Pseudomonas fluorescens SBW25. Liu Y; Gokhale CS; Rainey PB; Zhang XX Mol Microbiol; 2017 Aug; 105(4):589-605. PubMed ID: 28557013 [TBL] [Abstract][Full Text] [Related]
18. Influence of the Hfq and Crc global regulators on the control of iron homeostasis in Pseudomonas putida. Sánchez-Hevia DL; Yuste L; Moreno R; Rojo F Environ Microbiol; 2018 Oct; 20(10):3484-3503. PubMed ID: 29708644 [TBL] [Abstract][Full Text] [Related]