These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37250059)

  • 1. Computational identification of promoters in
    Lin Y; Sun M; Zhang J; Li M; Yang K; Wu C; Zulfiqar H; Lai H
    Front Microbiol; 2023; 14():1200678. PubMed ID: 37250059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iProEP: A Computational Predictor for Predicting Promoter.
    Lai HY; Zhang ZY; Su ZD; Su W; Ding H; Chen W; Lin H
    Mol Ther Nucleic Acids; 2019 Sep; 17():337-346. PubMed ID: 31299595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational prediction of promotors in
    Zulfiqar H; Ahmed Z; Kissanga Grace-Mercure B; Hassan F; Zhang ZY; Liu F
    Front Microbiol; 2023; 14():1170785. PubMed ID: 37125199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. iPSW(2L)-PseKNC: A two-layer predictor for identifying promoters and their strength by hybrid features via pseudo K-tuple nucleotide composition.
    Xiao X; Xu ZC; Qiu WR; Wang P; Ge HT; Chou KC
    Genomics; 2019 Dec; 111(6):1785-1793. PubMed ID: 30529532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition.
    Lin H; Deng EZ; Ding H; Chen W; Chou KC
    Nucleic Acids Res; 2014 Dec; 42(21):12961-72. PubMed ID: 25361964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iTIS-PseKNC: Identification of Translation Initiation Site in human genes using pseudo k-tuple nucleotides composition.
    Kabir M; Iqbal M; Ahmad S; Hayat M
    Comput Biol Med; 2015 Nov; 66():252-7. PubMed ID: 26433457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SERS-based sensor with a machine learning based effective feature extraction technique for fast detection of colistin-resistant Klebsiella pneumoniae.
    Ciloglu FU; Hora M; Gundogdu A; Kahraman M; Tokmakci M; Aydin O
    Anal Chim Acta; 2022 Aug; 1221():340094. PubMed ID: 35934394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DP-BINDER: machine learning model for prediction of DNA-binding proteins by fusing evolutionary and physicochemical information.
    Ali F; Ahmed S; Swati ZNK; Akbar S
    J Comput Aided Mol Des; 2019 Jul; 33(7):645-658. PubMed ID: 31123959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational identification of N4-methylcytosine sites in the mouse genome with machine-learning method.
    Zulfiqar H; Khan RS; Hassan F; Hippe K; Hunt C; Ding H; Song XM; Cao R
    Math Biosci Eng; 2021 Apr; 18(4):3348-3363. PubMed ID: 34198389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ASRmiRNA: Abiotic Stress-Responsive miRNA Prediction in Plants by Using Machine Learning Algorithms with Pseudo
    Meher PK; Begam S; Sahu TK; Gupta A; Kumar A; Kumar U; Rao AR; Singh KP; Dhankher OP
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human pol II promoter prediction: time series descriptors and machine learning.
    Gangal R; Sharma P
    Nucleic Acids Res; 2005; 33(4):1332-6. PubMed ID: 15741185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of plant promoters based on hexamers and random triplet pair analysis.
    Azad AK; Shahid S; Noman N; Lee H
    Algorithms Mol Biol; 2011 Jun; 6():19. PubMed ID: 21711543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive Prediction of Lipocalin Proteins Using Artificial Intelligence Strategy.
    Zulfiqar H; Ahmed Z; Ma CY; Khan RS; Grace-Mercure BK; Yu XL; Zhang ZY
    Front Biosci (Landmark Ed); 2022 Mar; 27(3):84. PubMed ID: 35345316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico screening of ssDNA aptamer against Escherichia coli O157:H7: A machine learning and the Pseudo K-tuple nucleotide composition based approach.
    Nosrati M; Amani J
    Comput Biol Chem; 2021 Dec; 95():107568. PubMed ID: 34543910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. m7GPredictor: An improved machine learning-based model for predicting internal m7G modifications using sequence properties.
    Liu X; Liu Z; Mao X; Li Q
    Anal Biochem; 2020 Nov; 609():113905. PubMed ID: 32805275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC.
    Liu B; Yang F; Huang DS; Chou KC
    Bioinformatics; 2018 Jan; 34(1):33-40. PubMed ID: 28968797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective Feature Selection for Classification of Promoter Sequences.
    K K; P G L; Rangarajan L; K AK
    PLoS One; 2016; 11(12):e0167165. PubMed ID: 27978541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Top scoring pairs for feature selection in machine learning and applications to cancer outcome prediction.
    Shi P; Ray S; Zhu Q; Kon MA
    BMC Bioinformatics; 2011 Sep; 12():375. PubMed ID: 21939564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of genome-wide imipenem resistance features in
    Li S; Wu J; Ma N; Liu W; Shao M; Ying N; Zhu L
    J Med Microbiol; 2023 Feb; 72(2):. PubMed ID: 36753438
    [No Abstract]   [Full Text] [Related]  

  • 20. Identification of cyclin protein using gradient boost decision tree algorithm.
    Zulfiqar H; Yuan SS; Huang QL; Sun ZJ; Dao FY; Yu XL; Lin H
    Comput Struct Biotechnol J; 2021; 19():4123-4131. PubMed ID: 34527186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.