These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37250213)

  • 21. A non-radical mechanism for methane hydroxylation at the diiron active site of soluble methane monooxygenase.
    Yoshizawa K; Yumura T
    Chemistry; 2003 May; 9(10):2347-58. PubMed ID: 12772310
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transition from hydrogen atom to hydride abstraction by Mn4O4(O2PPh2)6 versus [Mn4O4(O2PPh2)6]+: O-H bond dissociation energies and the formation of Mn4O3(OH)(O2PPh2)6.
    Carrell TG; Bourles E; Lin M; Dismukes GC
    Inorg Chem; 2003 May; 42(9):2849-58. PubMed ID: 12716176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Methane activation on single-atom Ir-doped metal nanoparticles from first principles.
    Ren Y; Liu X; Zhang Z; Shen X
    Phys Chem Chem Phys; 2021 Jul; 23(29):15564-15573. PubMed ID: 34259268
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oriented External Electric Fields Regurating the Reaction Mechanism of CH
    Wu J; Long T; Wang H; Liang JX; Zhu C
    Front Chem; 2022; 10():896944. PubMed ID: 35844657
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deciphering the origin of million-fold reactivity observed for the open core diiron [HO-Fe
    Ansari M; Senthilnathan D; Rajaraman G
    Chem Sci; 2020 Oct; 11(39):10669-10687. PubMed ID: 33209248
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly Dispersed Metal Carbide on ZIF-Derived Pyridinic-N-Doped Carbon for CO
    Li Y; Cai X; Chen S; Zhang H; Zhang KHL; Hong J; Chen B; Kuo DH; Wang W
    ChemSusChem; 2018 Mar; 11(6):1040-1047. PubMed ID: 29424046
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalytic Performance of a Dicopper-Oxo Complex for Methane Hydroxylation.
    Hori Y; Shiota Y; Tsuji T; Kodera M; Yoshizawa K
    Inorg Chem; 2018 Jan; 57(1):8-11. PubMed ID: 29249146
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Copper-Oxo Active Sites for Methane C-H Activation in Zeolites: Molecular Understanding of Impact of Methane Hydroxylation on UV-Vis Spectra.
    Adeyiga O; Suleiman O; Odoh SO
    Inorg Chem; 2021 Jun; 60(12):8489-8499. PubMed ID: 34097398
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct photo-oxidation of methane to methanol over a mono-iron hydroxyl site.
    An B; Li Z; Wang Z; Zeng X; Han X; Cheng Y; Sheveleva AM; Zhang Z; Tuna F; McInnes EJL; Frogley MD; Ramirez-Cuesta AJ; S Natrajan L; Wang C; Lin W; Yang S; Schröder M
    Nat Mater; 2022 Aug; 21(8):932-938. PubMed ID: 35773491
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel pathways for oxygen insertion into unactivated C-H bonds by dioxiranes. Transition structures for stepwise routes via radical pairs and comparison with the concerted pathway.
    Freccero M; Gandolfi R; Sarzi-Amadè M; Rastelli A
    J Org Chem; 2003 Feb; 68(3):811-23. PubMed ID: 12558403
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of tyrosine residue in methane activation at the dicopper site of particulate methane monooxygenase: a density functional theory study.
    Shiota Y; Juhász G; Yoshizawa K
    Inorg Chem; 2013 Jul; 52(14):7907-17. PubMed ID: 23808646
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two-step concerted mechanism for methane hydroxylation on the diiron active site of soluble methane monooxygenase.
    Yoshizawa K
    J Inorg Biochem; 2000 Jan; 78(1):23-34. PubMed ID: 10714702
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Beyond Radical Rebound: Methane Oxidation to Methanol Catalyzed by Iron Species in Metal-Organic Framework Nodes.
    Simons MC; Prinslow SD; Babucci M; Hoffman AS; Hong J; Vitillo JG; Bare SR; Gates BC; Lu CC; Gagliardi L; Bhan A
    J Am Chem Soc; 2021 Aug; 143(31):12165-12174. PubMed ID: 34314584
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct conversion of methane to methanol on boron nitride-supported copper single atoms.
    Wang S; Xin Y; Yuan J; Wang L; Zhang W
    Nanoscale; 2022 Apr; 14(14):5447-5453. PubMed ID: 35322827
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient direct conversion of methane into methanol on CuZn hetero-diatomic catalysts with certain coordination spheres: a DFT study.
    Yang C; Liu C; Wang Y; Zhang HN; He QW; Tang DS; Wang XC
    Phys Chem Chem Phys; 2022 Oct; 24(39):24264-24270. PubMed ID: 36172737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of an alternative to the H-atom abstraction mechanism in methane C-H bond activation by nonheme iron(IV)-oxo oxidants.
    Tang H; Guan J; Liu H; Huang X
    Dalton Trans; 2013 Jul; 42(28):10260-70. PubMed ID: 23732441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol.
    Woertink JS; Smeets PJ; Groothaert MH; Vance MA; Sels BF; Schoonheydt RA; Solomon EI
    Proc Natl Acad Sci U S A; 2009 Nov; 106(45):18908-13. PubMed ID: 19864626
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Methane Activation on H-ZSM-5 Zeolite with Low Copper Loading. The Nature of Active Sites and Intermediates Identified with the Combination of Spectroscopic Methods.
    Gabrienko AA; Yashnik SA; Kolganov AA; Sheveleva AM; Arzumanov SS; Fedin MV; Tuna F; Stepanov AG
    Inorg Chem; 2020 Feb; 59(3):2037-2050. PubMed ID: 31971794
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A theoretical study of alcohol oxidation by ferrate.
    Ohta T; Kamachi T; Shiota Y; Yoshizawa K
    J Org Chem; 2001 Jun; 66(12):4122-31. PubMed ID: 11397143
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Theoretical Study of the Oxidation of Methane to Methanol by the [Cu
    Liu YF; Du L
    Inorg Chem; 2018 Mar; 57(6):3261-3271. PubMed ID: 29504752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.