BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 37250684)

  • 21. Restoring Vision to the Blind with Chemical Photoswitches.
    Tochitsky I; Kienzler MA; Isacoff E; Kramer RH
    Chem Rev; 2018 Nov; 118(21):10748-10773. PubMed ID: 29874052
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A light in the dark: state of the art and perspectives in optogenetics and optopharmacology for restoring vision.
    Chemi G; Brindisi M; Brogi S; Relitti N; Butini S; Gemma S; Campiani G
    Future Med Chem; 2019 Mar; 11(5):463-487. PubMed ID: 30907134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Retinitis pigmentosa: eye sight restoration by optogenetic therapy].
    Roska B; Busskamp V; Sahel JA; Picaud S
    Biol Aujourdhui; 2013; 207(2):109-21. PubMed ID: 24103341
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Maintaining ocular safety with light exposure, focusing on devices for optogenetic stimulation.
    Yan B; Vakulenko M; Min SH; Hauswirth WW; Nirenberg S
    Vision Res; 2016 Apr; 121():57-71. PubMed ID: 26882975
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bipolar cell targeted optogenetic gene therapy restores parallel retinal signaling and high-level vision in the degenerated retina.
    Kralik J; van Wyk M; Stocker N; Kleinlogel S
    Commun Biol; 2022 Oct; 5(1):1116. PubMed ID: 36266533
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retinal stimulation strategies to restore vision: Fundamentals and systems.
    Yue L; Weiland JD; Roska B; Humayun MS
    Prog Retin Eye Res; 2016 Jul; 53():21-47. PubMed ID: 27238218
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optogenetic Vision Restoration Using Rhodopsin for Enhanced Sensitivity.
    Gaub BM; Berry MH; Holt AE; Isacoff EY; Flannery JG
    Mol Ther; 2015 Oct; 23(10):1562-71. PubMed ID: 26137852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cellular and subcellular optogenetic approaches towards neuroprotection and vision restoration.
    Wood EH; Kreymerman A; Kowal T; Buickians D; Sun Y; Muscat S; Mercola M; Moshfeghi DM; Goldberg JL
    Prog Retin Eye Res; 2023 Sep; 96():101153. PubMed ID: 36503723
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proceedings of the First International Optogenetic Therapies for Vision Symposium.
    Francis PJ; Mansfield B; Rose S
    Transl Vis Sci Technol; 2013 Nov; 2(7):4. PubMed ID: 24349882
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Restoring vision using optogenetics without being blind to the risks.
    Harris AR; Gilbert F
    Graefes Arch Clin Exp Ophthalmol; 2022 Jan; 260(1):41-45. PubMed ID: 34724112
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Systematic Review of Optogenetic Vision Restoration: History, Challenges, and New Inventions from Bench to Bedside.
    Stefanov A; Flannery JG
    Cold Spring Harb Perspect Med; 2023 Jun; 13(6):. PubMed ID: 36376079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Retinal optogenetic therapies: clinical criteria for candidacy.
    Jacobson SG; Sumaroka A; Luo X; Cideciyan AV
    Clin Genet; 2013 Aug; 84(2):175-82. PubMed ID: 23590195
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Holographic optogenetic stimulation of patterned neuronal activity for vision restoration.
    Reutsky-Gefen I; Golan L; Farah N; Schejter A; Tsur L; Brosh I; Shoham S
    Nat Commun; 2013; 4():1509. PubMed ID: 23443537
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Emerging therapies for inherited retinal degeneration.
    Scholl HP; Strauss RW; Singh MS; Dalkara D; Roska B; Picaud S; Sahel JA
    Sci Transl Med; 2016 Dec; 8(368):368rv6. PubMed ID: 27928030
    [TBL] [Abstract][Full Text] [Related]  

  • 35. STEM CELL THERAPIES, GENE-BASED THERAPIES, OPTOGENETICS, AND RETINAL PROSTHETICS: Current State and Implications for the Future.
    Wood EH; Tang PH; De la Huerta I; Korot E; Muscat S; Palanker DA; Williams GA
    Retina; 2019 May; 39(5):820-835. PubMed ID: 30664120
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optogenetic restoration of high sensitivity vision with bReaChES, a red-shifted channelrhodopsin.
    Too LK; Shen W; Protti DA; Sawatari A; A Black D; Leamey CA; Y Huang J; Lee SR; E Mathai A; Lisowski L; Y Lin J; C Gillies M; Simunovic MP
    Sci Rep; 2022 Nov; 12(1):19312. PubMed ID: 36369267
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Salvaging ruins: reverting blind retinas into functional visual sensors.
    Mutter M; Swietek N; Münch TA
    Methods Mol Biol; 2014; 1148():149-60. PubMed ID: 24718800
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Optogenetics and cell replacement in retinology : Regenerative ophthalmology-What we can do!].
    Busskamp V; Kunze S
    Ophthalmologie; 2022 Sep; 119(9):910-918. PubMed ID: 35536395
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Restoring the ON Switch in Blind Retinas: Opto-mGluR6, a Next-Generation, Cell-Tailored Optogenetic Tool.
    van Wyk M; Pielecka-Fortuna J; Löwel S; Kleinlogel S
    PLoS Biol; 2015 May; 13(5):e1002143. PubMed ID: 25950461
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dampening Spontaneous Activity Improves the Light Sensitivity and Spatial Acuity of Optogenetic Retinal Prosthetic Responses.
    Barrett JM; Hilgen G; Sernagor E
    Sci Rep; 2016 Sep; 6():33565. PubMed ID: 27650332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.