These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 37250692)

  • 41. The development of an upper limb stroke rehabilitation robot: identification of clinical practices and design requirements through a survey of therapists.
    Lu EC; Wang RH; Hebert D; Boger J; Galea MP; Mihailidis A
    Disabil Rehabil Assist Technol; 2011; 6(5):420-31. PubMed ID: 21184626
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Design, implementation and clinical tests of a wire-based robot for neurorehabilitation.
    Rosati G; Gallina P; Masiero S
    IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):560-9. PubMed ID: 18198714
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Upper-Limb Robotic Exoskeletons for Neurorehabilitation: A Review on Control Strategies.
    Proietti T; Crocher V; Roby-Brami A; Jarrasse N
    IEEE Rev Biomed Eng; 2016; 9():4-14. PubMed ID: 27071194
    [TBL] [Abstract][Full Text] [Related]  

  • 44. SafeNet: a methodology for integrating general-purpose unsafe devices in safe-robot rehabilitation systems.
    Vicentini F; Pedrocchi N; Malosio M; Molinari Tosatti L
    Comput Methods Programs Biomed; 2014 Sep; 116(2):156-68. PubMed ID: 24750989
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Assessing Effectiveness and Costs in Robot-Mediated Lower Limbs Rehabilitation: A Meta-Analysis and State of the Art.
    Carpino G; Pezzola A; Urbano M; Guglielmelli E
    J Healthc Eng; 2018; 2018():7492024. PubMed ID: 29973978
    [TBL] [Abstract][Full Text] [Related]  

  • 46. ARMStick - An Intuitive Therapist Interface for Upper-Limb Rehabilitation Robots.
    Sommerhalder M; Kurth N; Song J; Riener R
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176161
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficacy of wrist robot-aided orthopedic rehabilitation: a randomized controlled trial.
    Albanese GA; Taglione E; Gasparini C; Grandi S; Pettinelli F; Sardelli C; Catitti P; Sandini G; Masia L; Zenzeri J
    J Neuroeng Rehabil; 2021 Aug; 18(1):130. PubMed ID: 34465356
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Practical Recommendations for Robot-Assisted Treadmill Therapy (Lokomat) in Children with Cerebral Palsy: Indications, Goal Setting, and Clinical Implementation within the WHO-ICF Framework.
    Aurich-Schuler T; Warken B; Graser JV; Ulrich T; Borggraefe I; Heinen F; Meyer-Heim A; van Hedel HJ; Schroeder AS
    Neuropediatrics; 2015 Aug; 46(4):248-60. PubMed ID: 26011438
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exploiting telerobotics for sensorimotor rehabilitation: a locomotor embodiment.
    Koh MH; Yen SC; Leung LY; Gans S; Sullivan K; Adibnia Y; Pavel M; Hasson CJ
    J Neuroeng Rehabil; 2021 Apr; 18(1):66. PubMed ID: 33882949
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Introducing CARESSER: A framework for in situ learning robot social assistance from expert knowledge and demonstrations.
    Andriella A; Torras C; Abdelnour C; Alenyà G
    User Model User-adapt Interact; 2023; 33(2):441-496. PubMed ID: 35311217
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A pilot study on the design and validation of a hybrid exoskeleton robotic device for hand rehabilitation.
    Haghshenas-Jaryani M; Patterson RM; Bugnariu N; Wijesundara MBJ
    J Hand Ther; 2020; 33(2):198-208. PubMed ID: 32423846
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The value of robotic systems in stroke rehabilitation.
    Masiero S; Poli P; Rosati G; Zanotto D; Iosa M; Paolucci S; Morone G
    Expert Rev Med Devices; 2014 Mar; 11(2):187-98. PubMed ID: 24479445
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Customizing Robot-Assisted Passive Neurorehabilitation Exercise Based on Teaching Training Mechanism.
    Lin Y; Qu Q; Lin Y; He J; Zhang Q; Wang C; Jiang Z; Guo F; Jia J
    Biomed Res Int; 2021; 2021():9972560. PubMed ID: 34195289
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rehabilitation robotics ontology on the cloud.
    Dogmus Z; Papantoniou A; Kilinc M; Yildirim SA; Erdem E; Patoglu V
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650415. PubMed ID: 24187234
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The economic cost of robotic rehabilitation for adult stroke patients: a systematic review.
    Lo K; Stephenson M; Lockwood C
    JBI Database System Rev Implement Rep; 2019 Apr; 17(4):520-547. PubMed ID: 30973526
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Automatic and Personalized Adaptation of Therapy Parameters for Unsupervised Robot-Assisted Rehabilitation: a Pilot Evaluation.
    Devittori G; Ranzani R; Dinacci D; Romiti D; Califfi A; Petrillo C; Rossi P; Gassert R; Lambercy O
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176083
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Robot-aided sensorimotor training in stroke rehabilitation.
    Volpe BT; Krebs HI; Hogan N
    Adv Neurol; 2003; 92():429-33. PubMed ID: 12760210
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Review of Robot-Assisted Lower-Limb Stroke Therapy: Unexplored Paths and Future Directions in Gait Rehabilitation.
    Hobbs B; Artemiadis P
    Front Neurorobot; 2020; 14():19. PubMed ID: 32351377
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Robotic devices for paediatric rehabilitation: a review of design features.
    Gonzalez A; Garcia L; Kilby J; McNair P
    Biomed Eng Online; 2021 Sep; 20(1):89. PubMed ID: 34488777
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Towards functional robotic training: motor learning of dynamic tasks is enhanced by haptic rendering but hampered by arm weight support.
    Özen Ö; Buetler KA; Marchal-Crespo L
    J Neuroeng Rehabil; 2022 Feb; 19(1):19. PubMed ID: 35152897
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.