These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37250787)

  • 1. Machine learning enabled rational design for dynamic thermal emitters with phase change materials.
    Wang J; Zhan Y; Ma W; Zhu H; Li Y; Li X
    iScience; 2023 Jun; 26(6):106857. PubMed ID: 37250787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive and Dynamic Phase-Change-Based Radiative Cooling in Outdoor Weather.
    Xu X; Gu J; Zhao H; Zhang X; Dou S; Li Y; Zhao J; Zhan Y; Li X
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14313-14320. PubMed ID: 35302341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiative cooling of solar cells: opto-electro-thermal physics and modeling.
    An Y; Sheng C; Li X
    Nanoscale; 2019 Sep; 11(36):17073-17083. PubMed ID: 31506658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectrally tunable nanocomposite metamaterials as near-perfect emitters for mid-infrared thermal radiation management.
    Cao J; Liu X; Chang Q; Yang Z; Zhou H; Fan T
    Phys Chem Chem Phys; 2020 Dec; 22(48):28012-28020. PubMed ID: 33300901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband directional control of thermal emission.
    Xu J; Mandal J; Raman AP
    Science; 2021 Apr; 372(6540):393-397. PubMed ID: 33888638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal management materials for energy-efficient and sustainable future buildings.
    Qin Z; Li M; Flohn J; Hu Y
    Chem Commun (Camb); 2021 Nov; 57(92):12236-12253. PubMed ID: 34723305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable Thermal Camouflage Based on GST Plasmonic Metamaterial.
    Kang Q; Li D; Guo K; Gao J; Guo Z
    Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33498418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanophotonic engineering of far-field thermal emitters.
    Baranov DG; Xiao Y; Nechepurenko IA; Krasnok A; Alù A; Kats MA
    Nat Mater; 2019 Sep; 18(9):920-930. PubMed ID: 31133732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Solution-Processed Inorganic Emitter with High Spectral Selectivity for Efficient Subambient Radiative Cooling in Hot Humid Climates.
    Lin C; Li Y; Chi C; Kwon YS; Huang J; Wu Z; Zheng J; Liu G; Tso CY; Chao CYH; Huang B
    Adv Mater; 2022 Mar; 34(12):e2109350. PubMed ID: 35038775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-infrared and mid-infrared semiconductor broadband light emitters.
    Hou CC; Chen HM; Zhang JC; Zhuo N; Huang YQ; Hogg RA; Childs DT; Ning JQ; Wang ZG; Liu FQ; Zhang ZY
    Light Sci Appl; 2018; 7():17170. PubMed ID: 30839527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling.
    Li D; Liu X; Li W; Lin Z; Zhu B; Li Z; Li J; Li B; Fan S; Xie J; Zhu J
    Nat Nanotechnol; 2021 Feb; 16(2):153-158. PubMed ID: 33199884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermophotovoltaics with spectral and angular selective doped-oxide thermal emitters.
    Sakr E; Bermel P
    Opt Express; 2017 Oct; 25(20):A880-A895. PubMed ID: 29041299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectrally and Spatially Selective Emitters Using Polymer Hybrid Spoof Plasmonics.
    Lee GJ; Kim DH; Heo SY; Song YM
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):53206-53214. PubMed ID: 33172255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultranarrow and Wavelength-Scalable Thermal Emitters Driven by High-Order Antiferromagnetic Resonances in Dielectric Nanogratings.
    Liu M; Zhao C
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25306-25315. PubMed ID: 34014072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-perfect absorption by photonic crystals with a broadband and omnidirectional impedance-matching property.
    Luo J; Lai Y
    Opt Express; 2019 May; 27(11):15800-15811. PubMed ID: 31163771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials.
    Cai L; Du K; Qu Y; Luo H; Pan M; Qiu M; Li Q
    Opt Lett; 2018 Mar; 43(6):1295-1298. PubMed ID: 29543275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband absorption engineering of hyperbolic metafilm patterns.
    Ji D; Song H; Zeng X; Hu H; Liu K; Zhang N; Gan Q
    Sci Rep; 2014 Mar; 4():4498. PubMed ID: 24675706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermally Activated Delayed Fluorescence (TADF) Path toward Efficient Electroluminescence in Purely Organic Materials: Molecular Level Insight.
    Chen XK; Kim D; Brédas JL
    Acc Chem Res; 2018 Sep; 51(9):2215-2224. PubMed ID: 30141908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VO
    Bowei X; Wenjie Z; Junming Z; Linhua L
    Opt Express; 2022 Sep; 30(19):34314-34327. PubMed ID: 36242446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.