These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 37251137)
1. Study on Hydrothermal Cracking of Heavy Oil under the Coexisting Conditions of Supercritical Water and Non-condensate Gas. Pang Z; Wang Q; Tian C; Chen J ACS Omega; 2023 May; 8(20):18029-18040. PubMed ID: 37251137 [TBL] [Abstract][Full Text] [Related]
2. Laboratory Production of Biofuels and Biochemicals from a Rapeseed Oil through Catalytic Cracking Conversion. Ng SH; Shi Y; Heshka NE; Zhang Y; Little E J Vis Exp; 2016 Sep; (115):. PubMed ID: 27684325 [TBL] [Abstract][Full Text] [Related]
3. A novel ultrasonic-assisted method for enhanced yield of light oil in the thermal cracking of residual oil. Song G; Wang DH; Zhang Z; Liu M; Xu Q; Zhao DZ Ultrason Sonochem; 2018 Nov; 48():103-109. PubMed ID: 30080531 [TBL] [Abstract][Full Text] [Related]
4. Synergistic Catalysis of Water-Soluble Exogenous Catalysts and Reservoir Minerals during the Aquathermolysis of Heavy Oil. Wang Q; Zhang S; Chen X; Ni J; Du J; Li Y; Xin X; Zhao B; Chen G Molecules; 2024 Aug; 29(16):. PubMed ID: 39202841 [TBL] [Abstract][Full Text] [Related]
5. Volatile light hydrocarbons as thermal and alteration indicators in oil and gas fields. Arouri KR Sci Rep; 2024 Jun; 14(1):12676. PubMed ID: 38830915 [TBL] [Abstract][Full Text] [Related]
6. The ultrasound thermal cracking for the tar-sand bitumen. Fan Q; Bai G; Liu Q; Sun Y; Yuan W; Wu S; Song XM; Zhao DZ Ultrason Sonochem; 2019 Jan; 50():354-362. PubMed ID: 30293739 [TBL] [Abstract][Full Text] [Related]
7. Comparative study on the pyrolysis behavior and pyrolysate characteristics of Fushun oil shale during anhydrous pyrolysis and sub/supercritical water pyrolysis. Lu Y; Wang Z; Kang Z; Li W; Yang D; Zhao Y RSC Adv; 2022 Jun; 12(26):16329-16341. PubMed ID: 35747525 [TBL] [Abstract][Full Text] [Related]
8. Role of Catalyst in Optimizing Fluid Catalytic Cracking Performance During Cracking of H-Oil-Derived Gas Oils. Stratiev D; Shishkova I; Ivanov M; Dinkov R; Georgiev B; Argirov G; Atanassova V; Vassilev P; Atanassov K; Yordanov D; Popov A; Padovani A; Hartmann U; Brandt S; Nenov S; Sotirov S; Sotirova E ACS Omega; 2021 Mar; 6(11):7626-7637. PubMed ID: 33778273 [TBL] [Abstract][Full Text] [Related]
9. Microstructure of Heavy Oil Components and Mechanism of Influence on Viscosity of Heavy Oil. Wang Q; Zhang W; Wang C; Han X; Wang H; Zhang H ACS Omega; 2023 Mar; 8(12):10980-10990. PubMed ID: 37008103 [TBL] [Abstract][Full Text] [Related]
10. Oil-Soluble Exogenous Catalysts and Reservoir Minerals Synergistically Catalyze the Aquathermolysis of Heavy Oil. Li Y; Zhang S; Wang Y; Qi G; Yu T; Xin X; Zhao B; Chen G Molecules; 2023 Sep; 28(19):. PubMed ID: 37836609 [TBL] [Abstract][Full Text] [Related]
11. Large-scale reactive molecular dynamics simulation and kinetic modeling of high-temperature pyrolysis of the Gloeocapsomorphaprisca microfossils. Zou C; Raman S; van Duin AC J Phys Chem B; 2014 Jun; 118(23):6302-15. PubMed ID: 24821589 [TBL] [Abstract][Full Text] [Related]
12. Multifunctional two-stage riser fluid catalytic cracking process. Zhang J; Shan H; Chen X; Li C; Yang C Appl Petrochem Res; 2014; 4(4):395-400. PubMed ID: 27656341 [TBL] [Abstract][Full Text] [Related]
13. Study of Conversion of Bio-oil Model Compounds in Supercritical Water Using Density Functional Theory. Agrawal K; Kishore N Sci Rep; 2020 Jun; 10(1):9247. PubMed ID: 32514130 [TBL] [Abstract][Full Text] [Related]
14. Experimental Investigation on the Pyrolysis and Conversion Characteristics of Organic-Rich Shale by Supercritical Water. Yao C; Meng F; Zhang H; Di T; Zhou Y; Du X ACS Omega; 2023 Dec; 8(51):49046-49056. PubMed ID: 38162776 [TBL] [Abstract][Full Text] [Related]
15. Carbon dioxide-mediated thermochemical conversion of banner waste using cobalt oxide catalyst as a strategy for plastic waste treatment. Lee N; Lin KA; Lee J Environ Res; 2022 Oct; 213():113560. PubMed ID: 35644496 [TBL] [Abstract][Full Text] [Related]
16. Asphaltene biotransformation for heavy oil upgradation. Zargar AN; Kumar A; Sinha A; Kumar M; Skiadas I; Mishra S; Srivastava P AMB Express; 2021 Sep; 11(1):127. PubMed ID: 34491455 [TBL] [Abstract][Full Text] [Related]
17. A Mechanistic Study of Layered-Double Hydroxide (LDH)-Derived Nickel-Enriched Mixed Oxide (Ni-MMO) in Ultradispersed Catalytic Pyrolysis of Heavy Oil and Related Petroleum Coke Formation. Claydon R; Wood J Energy Fuels; 2019 Nov; 33(11):10820-10832. PubMed ID: 32063667 [TBL] [Abstract][Full Text] [Related]
18. Cavitation induced upgrading of heavy oil and bottom-of-the-barrel: A review. Sawarkar AN Ultrason Sonochem; 2019 Nov; 58():104690. PubMed ID: 31450381 [TBL] [Abstract][Full Text] [Related]
19. Fuel production by cracking of polyolefins pyrolysis waxes under fluid catalytic cracking (FCC) operating conditions. Rodríguez E; Gutiérrez A; Palos R; Vela FJ; Arandes JM; Bilbao J Waste Manag; 2019 Jun; 93():162-172. PubMed ID: 31235053 [TBL] [Abstract][Full Text] [Related]
20. Numerical Investigations on the Molecular Reaction Model for Thermal Cracking of n-Decane at Supercritical Pressures. Zhang L; Yin R; Wang J; Li X ACS Omega; 2022 Jul; 7(26):22351-22362. PubMed ID: 35811859 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]