These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37251162)

  • 1. High-Thermal-Conductivity and High-Fluidity Heat Transfer Emulsion with 89 wt % Suspended Liquid Metal Microdroplets.
    Kim S; Kang S; Lee J
    ACS Omega; 2023 May; 8(20):17748-17757. PubMed ID: 37251162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing Thermal Transport in Silicone Composites via Bridging Liquid Metal Fillers with Reactive Metal Co-Fillers and Matrix Viscosity Tuning.
    Uppal A; Kong W; Rana A; Wang RY; Rykaczewski K
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):43348-43355. PubMed ID: 34491735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Latent Heat Storage Systems Based on Liquid Metal Matrices with Suspended Phase Change Material Microparticles.
    Kang S; Kim W; Song C; Hong Y; Kim S; Goh M; Chung SK; Lee J
    ACS Appl Mater Interfaces; 2023 Aug; 15(30):36781-36791. PubMed ID: 37475159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal Percolation Threshold and Thermal Properties of Composites with High Loading of Graphene and Boron Nitride Fillers.
    Kargar F; Barani Z; Salgado R; Debnath B; Lewis JS; Aytan E; Lake RK; Balandin AA
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37555-37565. PubMed ID: 30299919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High thermal conductivity in soft elastomers with elongated liquid metal inclusions.
    Bartlett MD; Kazem N; Powell-Palm MJ; Huang X; Sun W; Malen JA; Majidi C
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2143-2148. PubMed ID: 28193902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal Percolation in Well-Defined Nanocomposite Thin Films.
    Chang BS; Li C; Dai J; Evans K; Huang J; He M; Hu W; Tian Z; Xu T
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14579-14587. PubMed ID: 35311286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Thermal Conductivity of Copper Nanofluids: The Effect of Filler Geometry.
    Bhanushali S; Jason NN; Ghosh P; Ganesh A; Simon GP; Cheng W
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18925-18935. PubMed ID: 28471162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lightweight, Thermally Conductive Liquid Metal Elastomer Composite with Independently Controllable Thermal Conductivity and Density.
    Krings EJ; Zhang H; Sarin S; Shield JE; Ryu S; Markvicka EJ
    Small; 2021 Dec; 17(52):e2104762. PubMed ID: 34723427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquid-Suspended and Liquid-Bridged Liquid Metal Microdroplets.
    Kim J; Lee J
    Small; 2022 Apr; 18(14):e2108069. PubMed ID: 35150080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Performance Liquid Metal/Polyborosiloxane Elastomer toward Thermally Conductive Applications.
    Zhao C; Wang Y; Gao L; Xu Y; Fan Z; Liu X; Ni Y; Xuan S; Deng H; Gong X
    ACS Appl Mater Interfaces; 2022 May; 14(18):21564-21576. PubMed ID: 35475337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective Heat Transfer Pathways of Thermally Conductive Networks Formed by One-Dimensional Carbon Materials with Different Sizes.
    Lee YS; Lee SY; Kim KS; Noda S; Shim SE; Yang CM
    Polymers (Basel); 2019 Oct; 11(10):. PubMed ID: 31614671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Printable concentrated liquid metal composite with high thermal conductivity.
    Moon S; Kim H; Lee K; Park J; Kim Y; Choi SQ
    iScience; 2021 Oct; 24(10):103183. PubMed ID: 34703989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-Theoretical Thermal Conductivity Silver Nanoflakes as Reinforcements in Gap-Filling Adhesives.
    Chen L; Liu TH; Wang X; Wang Y; Cui X; Yan Q; Lv L; Ying J; Gao J; Han M; Yu J; Song C; Gao J; Sun R; Xue C; Jiang N; Deng T; Nishimura K; Yang R; Lin CT; Dai W
    Adv Mater; 2023 Aug; 35(31):e2211100. PubMed ID: 36929098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gallium oxide-stabilized oil in liquid metal emulsions.
    Shah NUH; Kong W; Casey N; Kanetkar S; Wang RY; Rykaczewski K
    Soft Matter; 2021 Sep; 17(36):8269-8275. PubMed ID: 34397076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid Metal Composites with Enhanced Thermal Conductivity and Stability Using Molecular Thermal Linker.
    Wang H; Xing W; Chen S; Song C; Dickey MD; Deng T
    Adv Mater; 2021 Oct; 33(43):e2103104. PubMed ID: 34510554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheological Properties and Thermal Conductivity of Epoxy Resins Filled with a Mixture of Alumina and Boron Nitride.
    Mai VD; Lee DI; Park JH; Lee DS
    Polymers (Basel); 2019 Apr; 11(4):. PubMed ID: 30960581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid Metal-Based Magnetorheological Fluid with a Large Magnetocaloric Effect.
    Lu Y; Zhou H; Mao H; Tang S; Sheng L; Zhang H; Liu J
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48748-48755. PubMed ID: 33070606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure-Activated Thermal Transport via Oxide Shell Rupture in Liquid Metal Capsule Beds.
    Uppal A; Ralphs M; Kong W; Hart M; Rykaczewski K; Wang RY
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2625-2633. PubMed ID: 31859474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of Fe3O4 nanoparticles on the thermal conductivities of various base fluids.
    Altan CL; Bucak S
    Nanotechnology; 2011 Jul; 22(28):285713. PubMed ID: 21659690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical homogenization of thermal conductivity of particle-filled thermal interface material by fast Fourier transform method.
    Lu X; Fu X; Lu J; Sun R; Xu J; Yan C; Wong CP
    Nanotechnology; 2021 Apr; 32(26):. PubMed ID: 33652420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.