These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37251168)

  • 1. Dynamics of Droplet Coalescence on Hydrophobic Fibers in Oil: Morphology and Liquid Bridge Evolution.
    Li B; Tan W; Liu G; Huang M
    ACS Omega; 2023 May; 8(20):18019-18028. PubMed ID: 37251168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bridge evolution during the coalescence of immiscible droplets.
    Xu H; Wang T; Che Z
    J Colloid Interface Sci; 2022 Dec; 628(Pt A):869-877. PubMed ID: 35963173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coalescence of immiscible droplets in liquid environments.
    Xu H; Wang T; Che Z
    J Colloid Interface Sci; 2024 Apr; 659():60-70. PubMed ID: 38157727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Simulation of Coalescence-Induced Jumping of Multidroplets on Superhydrophobic Surfaces: Initial Droplet Arrangement Effect.
    Wang K; Liang Q; Jiang R; Zheng Y; Lan Z; Ma X
    Langmuir; 2017 Jun; 33(25):6258-6268. PubMed ID: 28562053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coalescence of Binary Droplets in the Transformer Oil Based on Small Amounts of Polymer: Effects of Initial Droplet Diameter and Collision Parameter.
    Wang Y; Qian L; Chen Z; Zhou F
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32917051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the Microscale Coalescence Behavior of Surfactant-Stabilized Droplets Using a Microfluidic Hydrodynamic Trap.
    Narayan S; Makhnenko I; Moravec DB; Hauser BG; Dallas AJ; Dutcher CS
    Langmuir; 2020 Aug; 36(33):9827-9842. PubMed ID: 32693603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Approach and coalescence of liquid drops in air.
    Paulsen JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):063010. PubMed ID: 24483560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of droplet geometry on the coalescence of low viscosity drops.
    Eddi A; Winkels KG; Snoeijer JH
    Phys Rev Lett; 2013 Oct; 111(14):144502. PubMed ID: 24138243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Splitting droplets through coalescence of two different three-phase contact lines.
    Yu H; Kant P; Dyett B; Lohse D; Zhang X
    Soft Matter; 2019 Aug; 15(30):6055-6061. PubMed ID: 31215583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of capillary coalescence and breakup: Quasi-two-dimensional nematic and isotropic droplets.
    Dolganov PV; Zverev AS; Baklanova KD; Dolganov VK
    Phys Rev E; 2021 Jul; 104(1-1):014702. PubMed ID: 34412240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Review on the Coalescence of Confined Drops with a Focus on Scaling Laws for the Growth of the Liquid Bridge.
    Ryu S; Zhang H; Anuta UJ
    Micromachines (Basel); 2023 Oct; 14(11):. PubMed ID: 38004903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Droplet coalescence on water repellant surfaces.
    Nam Y; Seo D; Lee C; Shin S
    Soft Matter; 2015 Jan; 11(1):154-60. PubMed ID: 25375970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical Investigation on Coalescence-Induced Jumping of Centripetal Moving Droplets.
    Gao S; Wu X
    Langmuir; 2022 Oct; 38(41):12674-12681. PubMed ID: 36201740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coalescence-Induced Swift Jumping of Nanodroplets on Curved Surfaces.
    He X; Zhao L; Cheng J
    Langmuir; 2019 Jul; 35(30):9979-9987. PubMed ID: 31282161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploration of Sweeping Effect: Droplet Coalescence Jumping of a Rolling and Static Droplet.
    Liu C; Zhao M; Guo J; Zhang S; Song L; Zheng Y
    Langmuir; 2024 Jan; 40(4):2278-2287. PubMed ID: 38237057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Enhancement of Coalescence-Induced Droplet Jumping on Superhydrophobic Surfaces with an Asymmetric V-Groove.
    Lu D; Zhao M; Zhang H; Yang Y; Zheng Y
    Langmuir; 2020 May; 36(19):5444-5453. PubMed ID: 32311257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavior Evolution of Droplets Suspended in Castor Oil under Alternating Current Electric Field.
    Ou G; Li J; Jin Y; Chen M; Ma Y; Gao K
    Langmuir; 2022 Feb; 38(6):2084-2093. PubMed ID: 35119874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coalescence-Induced Jumping of Nanodroplets on Textured Surfaces.
    Gao S; Liao Q; Liu W; Liu Z
    J Phys Chem Lett; 2018 Jan; 9(1):13-18. PubMed ID: 29235875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coalescence-induced droplet detachment on low-adhesion surfaces: A three-phase system study.
    Moradi M; Rahimian MH; Chini SF
    Phys Rev E; 2019 Jun; 99(6-1):063102. PubMed ID: 31330640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.