These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 37251691)
1. GraphCPIs: A novel graph-based computational model for potential compound-protein interactions. Chen ZH; Zhao BW; Li JQ; Guo ZH; You ZH Mol Ther Nucleic Acids; 2023 Jun; 32():721-728. PubMed ID: 37251691 [TBL] [Abstract][Full Text] [Related]
2. ParaCPI: A Parallel Graph Convolutional Network for Compound-Protein Interaction Prediction. Zhang L; Zeng W; Chen J; Chen J; Li K IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(5):1565-1578. PubMed ID: 38787671 [TBL] [Abstract][Full Text] [Related]
3. A general prediction model for compound-protein interactions based on deep learning. Ji W; She S; Qiao C; Feng Q; Rui M; Xu X; Feng C Front Pharmacol; 2024; 15():1465890. PubMed ID: 39295942 [TBL] [Abstract][Full Text] [Related]
4. A Novel Method to Predict Drug-Target Interactions Based on Large-Scale Graph Representation Learning. Zhao BW; You ZH; Hu L; Guo ZH; Wang L; Chen ZH; Wong L Cancers (Basel); 2021 Apr; 13(9):. PubMed ID: 33925568 [TBL] [Abstract][Full Text] [Related]
5. An inductive graph neural network model for compound-protein interaction prediction based on a homogeneous graph. Wan X; Wu X; Wang D; Tan X; Liu X; Fu Z; Jiang H; Zheng M; Li X Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35275993 [TBL] [Abstract][Full Text] [Related]
6. Effectively Identifying Compound-Protein Interaction Using Graph Neural Representation. Lin X; Quan Z; Wang ZJ; Guo Y; Zeng X; Yu PS IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):932-943. PubMed ID: 35951570 [TBL] [Abstract][Full Text] [Related]
7. DTiGNN: Learning drug-target embedding from a heterogeneous biological network based on a two-level attention-based graph neural network. Muniyappan S; Rayan AXA; Varrieth GT Math Biosci Eng; 2023 Mar; 20(5):9530-9571. PubMed ID: 37161255 [TBL] [Abstract][Full Text] [Related]
8. An end-to-end method for predicting compound-protein interactions based on simplified homogeneous graph convolutional network and pre-trained language model. Zhang Y; Li J; Lin S; Zhao J; Xiong Y; Wei DQ J Cheminform; 2024 Jun; 16(1):67. PubMed ID: 38849874 [TBL] [Abstract][Full Text] [Related]
9. GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug-protein interaction prediction. Xuan P; Fan M; Cui H; Zhang T; Nakaguchi T Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34718408 [TBL] [Abstract][Full Text] [Related]
10. MDL-CPI: Multi-view deep learning model for compound-protein interaction prediction. Wei L; Long W; Wei L Methods; 2022 Aug; 204():418-427. PubMed ID: 35114401 [TBL] [Abstract][Full Text] [Related]
11. GADTI: Graph Autoencoder Approach for DTI Prediction From Heterogeneous Network. Liu Z; Chen Q; Lan W; Pan H; Hao X; Pan S Front Genet; 2021; 12():650821. PubMed ID: 33912218 [TBL] [Abstract][Full Text] [Related]
12. Predicting drug-drug interactions by graph convolutional network with multi-kernel. Wang F; Lei X; Liao B; Wu FX Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34864856 [TBL] [Abstract][Full Text] [Related]
14. Drug response prediction using graph representation learning and Laplacian feature selection. Xie M; Lei X; Zhong J; Ouyang J; Li G BMC Bioinformatics; 2022 Dec; 23(Suppl 8):532. PubMed ID: 36494630 [TBL] [Abstract][Full Text] [Related]
15. BACPI: a bi-directional attention neural network for compound-protein interaction and binding affinity prediction. Li M; Lu Z; Wu Y; Li Y Bioinformatics; 2022 Mar; 38(7):1995-2002. PubMed ID: 35043942 [TBL] [Abstract][Full Text] [Related]
16. FMGNN: A Method to Predict Compound-Protein Interaction With Pharmacophore Features and Physicochemical Properties of Amino Acids. Tang C; Zhong C; Wang M; Zhou F IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1030-1040. PubMed ID: 35503835 [TBL] [Abstract][Full Text] [Related]
17. A deep learning method for predicting molecular properties and compound-protein interactions. Ma J; Zhang R; Li T; Jiang J; Zhao Z; Liu Y; Ma J J Mol Graph Model; 2022 Dec; 117():108283. PubMed ID: 35994925 [TBL] [Abstract][Full Text] [Related]
18. Predicting the potential human lncRNA-miRNA interactions based on graph convolution network with conditional random field. Wang W; Zhang L; Sun J; Zhao Q; Shuai J Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36305458 [TBL] [Abstract][Full Text] [Related]