These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 3725182)

  • 1. Activity-dependent depression of nerve action potential by phenytoin.
    David G; Selzer ME; Yaari Y
    Neurosci Lett; 1986 May; 66(2):163-8. PubMed ID: 3725182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency-dependent effects of phenytoin on frog junctional transmission: presynaptic mechanisms.
    Yaari Y; Selzer ME; David G
    Brain Res; 1985 Oct; 345(1):102-10. PubMed ID: 2998545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression by phenytoin of convulsant-induced afterdischarges at presynaptic nerve terminals.
    David G; Selzer ME; Yaari Y
    Brain Res; 1985 Jul; 339(1):57-65. PubMed ID: 2992698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency-dependent action of phenytoin on lamprey spinal axons.
    Adler EM; Yaari Y; David G; Selzer ME
    Brain Res; 1986 Jan; 362(2):271-80. PubMed ID: 3942876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the mechanism by which phenytoin blocks post-tetanic potentiation at the frog neuromuscular junction.
    Selzer ME; David G; Yaari Y
    J Neurosci; 1985 Nov; 5(11):2894-9. PubMed ID: 4056860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenytoin reduces frequency potentiation of synaptic potentials at the frog neuromuscular junction.
    Selzer ME; David G; Yaari Y
    Brain Res; 1984 Jun; 304(1):149-52. PubMed ID: 6744034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of Cerebellar Evoked Potentials by a peripheral action of diphenylhydantoin.
    Anderson RJ; Raines A
    Arch Int Pharmacodyn Ther; 1975 Nov; 218(1):144-55. PubMed ID: 1212012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute effects of phenytoin on peripheral nerve function in the rat.
    Marcus DJ; Swift TR; McDonald TF
    Muscle Nerve; 1981; 4(1):48-50. PubMed ID: 7231445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenytoin: mechanisms of its anticonvulsant action.
    Yaari Y; Selzer ME; Pincus JH
    Ann Neurol; 1986 Aug; 20(2):171-84. PubMed ID: 2428283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of nerve stimulation on spontaneously active preparations of the guinea pig ureter.
    Exintaris B; Lang RJ
    Urol Res; 1999 Oct; 27(5):328-35. PubMed ID: 10550520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of lacosamide, phenytoin and topiramate on peripheral nerve excitability: An ex vivo electrophysiological study.
    Zafeiridou G; Spilioti M; Kagiava A; Krikonis K; Kosmidis EK; Karlovasitou A; Kimiskidis VK
    Neurotoxicology; 2016 Jan; 52():57-63. PubMed ID: 26542247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stretch- and stimulation frequency-induced changes in extracellular action potentials of muscle fibres during continuous activity.
    Mileva K; Vydevska M; Radicheva N
    J Muscle Res Cell Motil; 1998 Jan; 19(1):95-103. PubMed ID: 9477381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in vitro electrophysiological study on the effects of phenytoin, lamotrigine and gabapentin on striatal neurons.
    Calabresi P; Centonze D; Marfia GA; Pisani A; Bernardi G
    Br J Pharmacol; 1999 Feb; 126(3):689-96. PubMed ID: 10188980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Function of the hyperpolarization-activated inward rectification in nonmyelinated peripheral rat and human axons.
    Grafe P; Quasthoff S; Grosskreutz J; Alzheimer C
    J Neurophysiol; 1997 Jan; 77(1):421-6. PubMed ID: 9120582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of lidocaine and calcium in blocking the compound action potential of frog sciatic nerve.
    Saito H; Akutagawa T; Kitahata LM; Stagg D; Collins JG; Scurlock JE
    Anesthesiology; 1984 Mar; 60(3):205-8. PubMed ID: 6607689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nerve fiber size-related block of action currents by phenytoin in mammalian nerve.
    Van den Berg RJ; Versluys CA; de Vos A; Voskuyl RA
    Epilepsia; 1994; 35(6):1279-88. PubMed ID: 7988522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of capsaicin in the motor nerve.
    Pettorossi VE; Bortolami R; Della Torre G; Brunetti O
    Exp Neurol; 1994 Aug; 128(2):284-9. PubMed ID: 8076671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for the involvement of an opioid system in sciatic nerve of Rana ridibunda.
    Camlica Y; Aşkin A; Cömelekoğlu U
    Neuropeptides; 2004; 38(2-3):83-91. PubMed ID: 15223270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Action of diazepam on the voltage-dependent Na+ current. Comparison with the effects of phenytoin, carbamazepine, lidocaine and flumazenil.
    Backus KH; Pflimlin P; Trube G
    Brain Res; 1991 May; 548(1-2):41-9. PubMed ID: 1651146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of anticonvulsant drugs on axonal conduction in mammalian corpus callosum.
    Silberstein E; Schleifstein-Attias D; Grossman Y
    Brain Res; 1992 Jul; 586(2):273-8. PubMed ID: 1521160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.