These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37251863)

  • 1. Influence of bimetal interface confinement on the Hall-petch slope of multiscale Cu/Nb multilayer composites.
    Ding C; Xu J; Shan D; Guo B; Langdon TG
    Heliyon; 2023 May; 9(5):e16231. PubMed ID: 37251863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructure and Strengthening Model of Cu-Fe In-Situ Composites.
    Liu K; Sheng X; Li Q; Zhang M; Han N; He G; Zou J; Chen W; Atrens A
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32781610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hetero interface and twin boundary mediated strengthening in nano-twinned Cu//Ag multilayered materials.
    Zheng Y; Li Q; Zhang J; Ye H; Zhang H; Shen L
    Nanotechnology; 2017 Oct; 28(41):415705. PubMed ID: 28782728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust Metallic Nanolaminates Having Phonon-Glass Thermal Conductivity.
    García-Pastor FA; Montelongo-Vega JB; Tovar-Padilla MV; Cardona-Castro MA; Alvarez-Quintana J
    Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33158127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Vacancy Sink Efficiency of Cu/V and Cu/Nb Interfaces by the Shared Cu Layer.
    Chen H; Du J; Liang Y; Wang P; Huang J; Zhang J; Zhao Y; Wang X; Zhang X; Wang Y; Stanciu GA; Fu E
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31426589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of the Cu Interlayer on the Interfacial Microstructure and Mechanical Properties of Al/Fe Bimetal by Compound Casting.
    Liu S; Xu H; Zhang B; Zhang G; Bai L; Song H; Zhang D; Chang C; Yu H; Yang C
    Materials (Basel); 2023 Aug; 16(15):. PubMed ID: 37570171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Al
    Bian X; Wang A; Xie J; Liu P; Mao Z; Liu Z
    Nanotechnology; 2023 Aug; 34(44):. PubMed ID: 37531938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tensile Properties of <111>-Oriented Nanotwinned Cu with Different Columnar Grain Structures.
    Li YJ; Tu KN; Chen C
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32183126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct observations of confined layer slip in Cu/Nb multilayers.
    Li N; Wang J; Misra A; Huang JY
    Microsc Microanal; 2012 Oct; 18(5):1155-62. PubMed ID: 23072907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Performance Nanoscale Metallic Multilayer Composites: Techniques, Mechanical Properties and Applications.
    Ebrahimi M; Luo B; Wang Q; Attarilar S
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Volume Fraction of Reinforcement on Microstructure and Mechanical Properties of In Situ (Ti, Nb)B/Ti
    Zhang N; Ju B; Deng T; Fu S; Duan C; Song Y; Jiang Y; Shen Q; Yao C; Liu M; Wu P; Xiu Z; Yang W
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ideal maximum strengths and defect-induced softening in nanocrystalline-nanotwinned metals.
    Ke X; Ye J; Pan Z; Geng J; Besser MF; Qu D; Caro A; Marian J; Ott RT; Wang YM; Sansoz F
    Nat Mater; 2019 Nov; 18(11):1207-1214. PubMed ID: 31548629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling the effects of interface orientation and crystallography on the deformation mechanisms of accumulative roll-bonded Cu-Nb-multilayered nanocomposites using molecular dynamics.
    Thyagatur A; Mushongera LT
    J Mol Model; 2022 May; 28(6):166. PubMed ID: 35610315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrodeposition of (111)-oriented and nanotwin-doped nanocrystalline Cu with ultrahigh strength for 3D IC application.
    Zheng Z; Huang YT; Wang Z; Zhang M; Wang WT; Chung CC; Cherng SJ; Tsai YH; Li PC; Lu Z; Chen CM; Feng SP
    Nanotechnology; 2021 Mar; 32(22):. PubMed ID: 33621959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructure and Mechanical Properties of AA1050/AA6061 Laminated Composites Fabricated through Three-Cycle Accumulative Roll Bonding and Subsequent Cryorolling.
    Song L; Gao H; Wang Z; Cui H; Kong C; Yu H
    Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Twin thickness-dependent tensile deformation mechanism on strengthening-softening of Si nanowires.
    Yimer MM; Wubeshet DA; Qin X
    Heliyon; 2023 May; 9(5):e16039. PubMed ID: 37215880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grain Size-Related Strengthening and Softening of a Precompressed and Heat-Treated Mg-Zn-Ca Alloy.
    Dobroň P; Drozdenko D; Horváth Fekete K; Olejňák J; Bohlen J
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31940918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructure Evolution and Mechanical Properties of Al-TiB₂/TiC In Situ Aluminum-Based Composites during Accumulative Roll Bonding (ARB) Process.
    Nie J; Wang F; Li Y; Cao Y; Liu X; Zhao Y; Zhu Y
    Materials (Basel); 2017 Jan; 10(2):. PubMed ID: 28772467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data compilation regarding the effects of grain size and temperature on the strength of the single-phase FCC CrFeNi medium-entropy alloy.
    Schneider M; Laplanche G
    Data Brief; 2021 Feb; 34():106712. PubMed ID: 33490332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructure and Mechanical Properties of Ultrafine-Grained Copper by Accumulative Roll Bonding and Subsequent Annealing.
    Liu X; Zhuang L; Zhao Y
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33207840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.