These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Nanoantennas Involved Optical Plasmonic Cavity for Improved Luminescence of Quantum Dots Light-Emitting Diodes. Wang H; Guo Y; Zang J; Hao H; Wang L; Liu T; Bian H; Jiang R; Wen R; Li H; Tong Y; Wang H ACS Appl Mater Interfaces; 2021 Sep; 13(37):44760-44767. PubMed ID: 34505502 [TBL] [Abstract][Full Text] [Related]
8. Multiresonant Composite Optical Nanoantennas by Out-of-plane Plasmonic Engineering. Song J; Zhou W Nano Lett; 2018 Jul; 18(7):4409-4416. PubMed ID: 29923727 [TBL] [Abstract][Full Text] [Related]
9. Selectively Addressing Plasmonic Modes and Excitonic States in a Nanocavity Hosting a Quantum Emitter. Martín-Jiménez A; Jover Ó; Lauwaet K; Granados D; Miranda R; Otero R Nano Lett; 2022 Dec; 22(23):9283-9289. PubMed ID: 36441511 [TBL] [Abstract][Full Text] [Related]
10. An electrically induced probe of the modes of a plasmonic multilayer stack. Cao S; Achlan M; Bryche JF; Gogol P; Dujardin G; Raşeev G; Le Moal E; Boer-Duchemin E Opt Express; 2019 Nov; 27(23):33011-33026. PubMed ID: 31878376 [TBL] [Abstract][Full Text] [Related]
12. Enhancing Magnetic Light Emission with All-Dielectric Optical Nanoantennas. Sanz-Paz M; Ernandes C; Esparza JU; Burr GW; van Hulst NF; Maitre A; Aigouy L; Gacoin T; Bonod N; Garcia-Parajo MF; Bidault S; Mivelle M Nano Lett; 2018 Jun; 18(6):3481-3487. PubMed ID: 29701991 [TBL] [Abstract][Full Text] [Related]
13. Photonic-plasmonic-coupled nanoantennas for polarization-controlled multispectral nanofocusing. Trevino J; Walsh GF; Pecora EF; Boriskina SV; Dal Negro L Opt Lett; 2013 Nov; 38(22):4861-3. PubMed ID: 24322151 [TBL] [Abstract][Full Text] [Related]
14. All-semiconductor plasmonic nanoantennas for infrared sensing. Law S; Yu L; Rosenberg A; Wasserman D Nano Lett; 2013 Sep; 13(9):4569-74. PubMed ID: 23987983 [TBL] [Abstract][Full Text] [Related]
15. Plasmonic Metamaterials for Nanochemistry and Sensing. Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511 [TBL] [Abstract][Full Text] [Related]
16. Electrically Driven Unidirectional Optical Nanoantennas. Gurunarayanan SP; Verellen N; Zharinov VS; James Shirley F; Moshchalkov VV; Heyns M; Van de Vondel J; Radu IP; Van Dorpe P Nano Lett; 2017 Dec; 17(12):7433-7439. PubMed ID: 29068692 [TBL] [Abstract][Full Text] [Related]
17. Tunable optical switching in the near-infrared spectral regime by employing plasmonic nanoantennas containing phase change materials. Savaliya PB; Thomas A; Dua R; Dhawan A Opt Express; 2017 Oct; 25(20):23755-23772. PubMed ID: 29041327 [TBL] [Abstract][Full Text] [Related]
18. Optical nanoantenna with muitiple surface plasmon resonances for enhancements in near-field intensity and far-field radiation. Liu S; Ju P; Lv L; Tang P; Wang H; Zhong L; Lu X Opt Express; 2021 Oct; 29(22):35678-35690. PubMed ID: 34808997 [TBL] [Abstract][Full Text] [Related]
19. High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas. Martin J; Kociak M; Mahfoud Z; Proust J; Gérard D; Plain J Nano Lett; 2014 Oct; 14(10):5517-23. PubMed ID: 25207386 [TBL] [Abstract][Full Text] [Related]
20. On-Demand Coupling of Electrically Generated Excitons with Surface Plasmons via Voltage-Controlled Emission Zone Position. Zakharko Y; Held M; Sadafi FZ; Gannott F; Mahdavi A; Peschel U; Taylor RN; Zaumseil J ACS Photonics; 2016 Jan; 3(1):1-7. PubMed ID: 26878028 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]