These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 37252951)
1. Electron heating in kinetic-Alfvén-wave turbulence. Zhou M; Liu Z; Loureiro NF Proc Natl Acad Sci U S A; 2023 Jun; 120(23):e2220927120. PubMed ID: 37252951 [TBL] [Abstract][Full Text] [Related]
2. Fluidization of collisionless plasma turbulence. Meyrand R; Kanekar A; Dorland W; Schekochihin AA Proc Natl Acad Sci U S A; 2019 Jan; 116(4):1185-1194. PubMed ID: 30610178 [TBL] [Abstract][Full Text] [Related]
3. A dynamical model of plasma turbulence in the solar wind. Howes GG Philos Trans A Math Phys Eng Sci; 2015 May; 373(2041):. PubMed ID: 25848075 [TBL] [Abstract][Full Text] [Related]
4. Gyrokinetic simulations of solar wind turbulence from ion to electron scales. Howes GG; TenBarge JM; Dorland W; Quataert E; Schekochihin AA; Numata R; Tatsuno T Phys Rev Lett; 2011 Jul; 107(3):035004. PubMed ID: 21838370 [TBL] [Abstract][Full Text] [Related]
5. Evidence for electron Landau damping in space plasma turbulence. Chen CHK; Klein KG; Howes GG Nat Commun; 2019 Feb; 10(1):740. PubMed ID: 30765843 [TBL] [Abstract][Full Text] [Related]
6. Monofractality in the Solar Wind at Electron Scales: Insights from Kinetic Alfvén Waves Turbulence. David V; Galtier S; Meyrand R Phys Rev Lett; 2024 Feb; 132(8):085201. PubMed ID: 38457708 [TBL] [Abstract][Full Text] [Related]
7. Fast collisionless reconnection and electron heating in strongly magnetized plasmas. Loureiro NF; Schekochihin AA; Zocco A Phys Rev Lett; 2013 Jul; 111(2):025002. PubMed ID: 23889411 [TBL] [Abstract][Full Text] [Related]
8. Fully Kinetic Simulation of 3D Kinetic Alfvén Turbulence. Grošelj D; Mallet A; Loureiro NF; Jenko F Phys Rev Lett; 2018 Mar; 120(10):105101. PubMed ID: 29570310 [TBL] [Abstract][Full Text] [Related]
9. Intermittent Dissipation and Heating in 3D Kinetic Plasma Turbulence. Wan M; Matthaeus WH; Roytershteyn V; Karimabadi H; Parashar T; Wu P; Shay M Phys Rev Lett; 2015 May; 114(17):175002. PubMed ID: 25978241 [TBL] [Abstract][Full Text] [Related]
10. Kinetic Simulations of the Interruption of Large-Amplitude Shear-Alfvén Waves in a High-β Plasma. Squire J; Kunz MW; Quataert E; Schekochihin AA Phys Rev Lett; 2017 Oct; 119(15):155101. PubMed ID: 29077437 [TBL] [Abstract][Full Text] [Related]
11. Heating of Magnetically Dominated Plasma by Alfvén-Wave Turbulence. Nättilä J; Beloborodov AM Phys Rev Lett; 2022 Feb; 128(7):075101. PubMed ID: 35244444 [TBL] [Abstract][Full Text] [Related]
12. Stochastic proton heating by kinetic-Alfvén-wave turbulence in moderately high- Hoppock IW; Chandran BDG; Klein KG; Mallet A; Verscharen D J Plasma Phys; 2018 Dec; 84(6):. PubMed ID: 30948860 [TBL] [Abstract][Full Text] [Related]
17. Dissipation and heating in solar wind turbulence: from the macro to the micro and back again. Kiyani KH; Osman KT; Chapman SC Philos Trans A Math Phys Eng Sci; 2015 May; 373(2041):. PubMed ID: 25848077 [TBL] [Abstract][Full Text] [Related]
18. Nature of subproton scale turbulence in the solar wind. Chen CH; Boldyrev S; Xia Q; Perez JC Phys Rev Lett; 2013 May; 110(22):225002. PubMed ID: 23767731 [TBL] [Abstract][Full Text] [Related]
19. Model of nonlinear kinetic Alfvén waves with dissipation and acceleration of energetic electrons. Wu DJ Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):027402. PubMed ID: 12636869 [TBL] [Abstract][Full Text] [Related]