These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37252982)

  • 1. Exceptional enhancement of mechanical properties in high-entropy alloys via thermodynamically guided local chemical ordering.
    Dasari S; Sharma A; Jiang C; Gwalani B; Lin WC; Lo KC; Gorsse S; Yeh AC; Srinivasan SG; Banerjee R
    Proc Natl Acad Sci U S A; 2023 Jun; 120(23):e2211787120. PubMed ID: 37252982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes.
    Lei Z; Liu X; Wu Y; Wang H; Jiang S; Wang S; Hui X; Wu Y; Gault B; Kontis P; Raabe D; Gu L; Zhang Q; Chen H; Wang H; Liu J; An K; Zeng Q; Nieh TG; Lu Z
    Nature; 2018 Nov; 563(7732):546-550. PubMed ID: 30429610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys.
    Ding J; Yu Q; Asta M; Ritchie RO
    Proc Natl Acad Sci U S A; 2018 Sep; 115(36):8919-8924. PubMed ID: 30127034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneously enhancing the ultimate strength and ductility of high-entropy alloys via short-range ordering.
    Chen S; Aitken ZH; Pattamatta S; Wu Z; Yu ZG; Srolovitz DJ; Liaw PK; Zhang YW
    Nat Commun; 2021 Aug; 12(1):4953. PubMed ID: 34400654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical short-range order in derivative Cr-Ta-Ti-V-W high entropy alloys from the first-principles thermodynamic study.
    Sobieraj D; Wróbel JS; Rygier T; Kurzydłowski KJ; El Atwani O; Devaraj A; Martinez Saez E; Nguyen-Manh D
    Phys Chem Chem Phys; 2020 Oct; 22(41):23929-23951. PubMed ID: 33073813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical Eutectoid Nano-lamellar Decomposition in an Al
    Dasari S; Gwalani B; Jagetia A; Soni V; Gorsse S; Banerjee R
    Sci Rep; 2020 Mar; 10(1):4836. PubMed ID: 32179812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational property predictions of Ta-Nb-Hf-Zr high-entropy alloys.
    Mishra S; Maiti S; Rai B
    Sci Rep; 2021 Mar; 11(1):4815. PubMed ID: 33649425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lattice-Distortion-Enhanced Yield Strength in a Refractory High-Entropy Alloy.
    Lee C; Chou Y; Kim G; Gao MC; An K; Brechtl J; Zhang C; Chen W; Poplawsky JD; Song G; Ren Y; Chou YC; Liaw PK
    Adv Mater; 2020 Dec; 32(49):e2004029. PubMed ID: 33135322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoprecipitate-Strengthened High-Entropy Alloys.
    Liu L; Zhang Y; Han J; Wang X; Jiang W; Liu CT; Zhang Z; Liaw PK
    Adv Sci (Weinh); 2021 Dec; 8(23):e2100870. PubMed ID: 34677914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys.
    Liang YJ; Wang L; Wen Y; Cheng B; Wu Q; Cao T; Xiao Q; Xue Y; Sha G; Wang Y; Ren Y; Li X; Wang L; Wang F; Cai H
    Nat Commun; 2018 Oct; 9(1):4063. PubMed ID: 30282971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An as-cast high-entropy alloy with remarkable mechanical properties strengthened by nanometer precipitates.
    Qin G; Chen R; Liaw PK; Gao Y; Wang L; Su Y; Ding H; Guo J; Li X
    Nanoscale; 2020 Feb; 12(6):3965-3976. PubMed ID: 32016212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strength can be controlled by edge dislocations in refractory high-entropy alloys.
    Lee C; Maresca F; Feng R; Chou Y; Ungar T; Widom M; An K; Poplawsky JD; Chou YC; Liaw PK; Curtin WA
    Nat Commun; 2021 Sep; 12(1):5474. PubMed ID: 34531394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulating the ordered oxygen complexes to achieve high strength and ductility in medium-entropy alloys.
    Jiao M; Lei Z; Wu Y; Du J; Zhou XY; Li W; Yuan X; Liu X; Zhu X; Wang S; Zhu H; Cao P; Liu X; Zhang X; Wang H; Jiang S; Lu Z
    Nat Commun; 2023 Feb; 14(1):806. PubMed ID: 36781880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Equiatomic CrMnFeCoNiCu System and Subsequent Derivation of a Non-Equiatomic MnFeCoNiCu Alloy.
    Ter-Isahakyan A; Balk TJ
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Ti on the Tensile Properties of the High-Strength Powder Metallurgy High Entropy Alloys.
    Moravcik I; Gamanov S; Moravcikova-Gouvea L; Kovacova Z; Kitzmantel M; Neubauer E; Dlouhy I
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31991866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio-predicted micro-mechanical performance of refractory high-entropy alloys.
    Li X; Tian F; Schönecker S; Zhao J; Vitos L
    Sci Rep; 2015 Jul; 5():12334. PubMed ID: 26199145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gradient cell-structured high-entropy alloy with exceptional strength and ductility.
    Pan Q; Zhang L; Feng R; Lu Q; An K; Chuang AC; Poplawsky JD; Liaw PK; Lu L
    Science; 2021 Nov; 374(6570):984-989. PubMed ID: 34554824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties.
    Li Z; Raabe D
    JOM (1989); 2017; 69(11):2099-2106. PubMed ID: 31983864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid-State Processing of CoCrMoNbTi High-Entropy Alloy for Biomedical Applications.
    Bololoi AE; Geambazu LE; Antoniac IV; Bololoi RV; Manea CA; Cojocaru VD; Pătroi D
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Entropy and Sluggish Diffusion "Core" Effects in Senary FCC Al-Co-Cr-Fe-Ni-Mn Alloys.
    Mehta A; Sohn Y
    ACS Comb Sci; 2020 Dec; 22(12):757-767. PubMed ID: 33074648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.