These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37253037)

  • 1. An economic evaluation of Wolbachia deployments for dengue control in Vietnam.
    Turner HC; Quyen DL; Dias R; Huong PT; Simmons CP; Anders KL
    PLoS Negl Trop Dis; 2023 May; 17(5):e0011356. PubMed ID: 37253037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effectiveness of Wolbachia-infected mosquito deployments in reducing the incidence of dengue and other Aedes-borne diseases in Niterói, Brazil: A quasi-experimental study.
    Pinto SB; Riback TIS; Sylvestre G; Costa G; Peixoto J; Dias FBS; Tanamas SK; Simmons CP; Dufault SM; Ryan PA; O'Neill SL; Muzzi FC; Kutcher S; Montgomery J; Green BR; Smithyman R; Eppinghaus A; Saraceni V; Durovni B; Anders KL; Moreira LA
    PLoS Negl Trop Dis; 2021 Jul; 15(7):e0009556. PubMed ID: 34252106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wolbachia-carrying Aedes mosquitoes for preventing dengue infection.
    Fox T; Sguassero Y; Chaplin M; Rose W; Doum D; Arevalo-Rodriguez I; Villanueva G
    Cochrane Database Syst Rev; 2024 Apr; 4(4):CD015636. PubMed ID: 38597256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The AWED trial (Applying Wolbachia to Eliminate Dengue) to assess the efficacy of Wolbachia-infected mosquito deployments to reduce dengue incidence in Yogyakarta, Indonesia: study protocol for a cluster randomised controlled trial.
    Anders KL; Indriani C; Ahmad RA; Tantowijoyo W; Arguni E; Andari B; Jewell NP; Rances E; O'Neill SL; Simmons CP; Utarini A
    Trials; 2018 May; 19(1):302. PubMed ID: 29855331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The economic impact and cost-effectiveness of combined vector-control and dengue vaccination strategies in Thailand: results from a dynamic transmission model.
    Knerer G; Currie CSM; Brailsford SC
    PLoS Negl Trop Dis; 2020 Oct; 14(10):e0008805. PubMed ID: 33095791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced dengue incidence following city-wide wMel Wolbachia mosquito releases throughout three Colombian cities: Interrupted time series analysis and a prospective case-control study.
    Velez ID; Tanamas SK; Arbelaez MP; Kutcher SC; Duque SL; Uribe A; Zuluaga L; Martínez L; Patiño AC; Barajas J; Muñoz E; Mejia Torres MC; Uribe S; Porras S; Almanza R; Pulido H; O'Neill SL; Santacruz-Sanmartin E; Gonzalez S; Ryan PA; Denton JA; Jewell NP; Dufault SM; Simmons CP; Anders KL
    PLoS Negl Trop Dis; 2023 Nov; 17(11):e0011713. PubMed ID: 38032857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficacy of Wolbachia-Infected Mosquito Deployments for the Control of Dengue.
    Utarini A; Indriani C; Ahmad RA; Tantowijoyo W; Arguni E; Ansari MR; Supriyati E; Wardana DS; Meitika Y; Ernesia I; Nurhayati I; Prabowo E; Andari B; Green BR; Hodgson L; Cutcher Z; Rancès E; Ryan PA; O'Neill SL; Dufault SM; Tanamas SK; Jewell NP; Anders KL; Simmons CP;
    N Engl J Med; 2021 Jun; 384(23):2177-2186. PubMed ID: 34107180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the efficacy of male Wolbachia-infected mosquito deployments to reduce dengue incidence in Singapore: study protocol for a cluster-randomized controlled trial.
    Ong J; Ho SH; Soh SXH; Wong Y; Ng Y; Vasquez K; Lai YL; Setoh YX; Chong CS; Lee V; Wong JCC; Tan CH; Sim S; Ng LC; Lim JT
    Trials; 2022 Dec; 23(1):1023. PubMed ID: 36528590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing the Aedes aegypti population in a Vietnamese village in preparation for a Wolbachia-based mosquito control strategy to eliminate dengue.
    Jeffery JA; Thi Yen N; Nam VS; Nghia le T; Hoffmann AA; Kay BH; Ryan PA
    PLoS Negl Trop Dis; 2009 Nov; 3(11):e552. PubMed ID: 19956588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cost-effectiveness of annual targeted larviciding campaigns in Cambodia against the dengue vector Aedes aegypti.
    Suaya JA; Shepard DS; Chang MS; Caram M; Hoyer S; Socheat D; Chantha N; Nathan MB
    Trop Med Int Health; 2007 Sep; 12(9):1026-36. PubMed ID: 17875014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of large-scale deployment of
    Durovni B; Saraceni V; Eppinghaus A; Riback TIS; Moreira LA; Jewell NP; Dufault SM; O'Neill SL; Simmons CP; Tanamas SK; Anders KL
    F1000Res; 2019; 8():1328. PubMed ID: 33447371
    [No Abstract]   [Full Text] [Related]  

  • 12. Efficacy of Wolbachia-mediated sterility to reduce the incidence of dengue: a synthetic control study in Singapore.
    Lim JT; Bansal S; Chong CS; Dickens B; Ng Y; Deng L; Lee C; Tan LY; Chain G; Ma P; Sim S; Tan CH; Cook AR; Ng LC
    Lancet Microbe; 2024 May; 5(5):e422-e432. PubMed ID: 38342109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cost-effectiveness of controlling dengue in Indonesia using wMel Wolbachia released at scale: a modelling study.
    Brady OJ; Kharisma DD; Wilastonegoro NN; O'Reilly KM; Hendrickx E; Bastos LS; Yakob L; Shepard DS
    BMC Med; 2020 Jul; 18(1):186. PubMed ID: 32641039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating the effect of the wMel release programme on the incidence of dengue and chikungunya in Rio de Janeiro, Brazil: a spatiotemporal modelling study.
    Ribeiro Dos Santos G; Durovni B; Saraceni V; Souza Riback TI; Pinto SB; Anders KL; Moreira LA; Salje H
    Lancet Infect Dis; 2022 Nov; 22(11):1587-1595. PubMed ID: 36182679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A metapopulation approach to identify targets for Wolbachia-based dengue control.
    Reyna-Lara A; Soriano-Paños D; Arias-Castro JH; Martínez HJ; Gómez-Gardeñes J
    Chaos; 2022 Apr; 32(4):041105. PubMed ID: 35489839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced dengue incidence following deployments of
    Indriani C; Tantowijoyo W; Rancès E; Andari B; Prabowo E; Yusdi D; Ansari MR; Wardana DS; Supriyati E; Nurhayati I; Ernesia I; Setyawan S; Fitriana I; Arguni E; Amelia Y; Ahmad RA; Jewell NP; Dufault SM; Ryan PA; Green BR; McAdam TF; O'Neill SL; Tanamas SK; Simmons CP; Anders KL; Utarini A
    Gates Open Res; 2020; 4():50. PubMed ID: 32803130
    [No Abstract]   [Full Text] [Related]  

  • 17. Simulation-based economic evaluation of the Wolbachia method in Brazil: a cost-effective strategy for dengue control.
    Zimmermann IR; Alves Fernandes RR; Santos da Costa MG; Pinto M; Peixoto HM
    Lancet Reg Health Am; 2024 Jul; 35():100783. PubMed ID: 38911346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An economic evaluation of vector control in the age of a dengue vaccine.
    Fitzpatrick C; Haines A; Bangert M; Farlow A; Hemingway J; Velayudhan R
    PLoS Negl Trop Dis; 2017 Aug; 11(8):e0005785. PubMed ID: 28806786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of randomised
    Indriani C; Tanamas SK; Khasanah U; Ansari MR; Rubangi ; Tantowijoyo W; Ahmad RA; Dufault SM; Jewell NP; Utarini A; Simmons CP; Anders KL
    Glob Health Action; 2023 Dec; 16(1):2166650. PubMed ID: 36700745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating the burden of dengue and the impact of release of wMel Wolbachia-infected mosquitoes in Indonesia: a modelling study.
    O'Reilly KM; Hendrickx E; Kharisma DD; Wilastonegoro NN; Carrington LB; Elyazar IRF; Kucharski AJ; Lowe R; Flasche S; Pigott DM; Reiner RC; Edmunds WJ; Hay SI; Yakob L; Shepard DS; Brady OJ
    BMC Med; 2019 Sep; 17(1):172. PubMed ID: 31495336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.