These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 37253070)

  • 1. Neural network and kinetic modelling of human genome replication reveal replication origin locations and strengths.
    Arbona JM; Kabalane H; Barbier J; Goldar A; Hyrien O; Audit B
    PLoS Comput Biol; 2023 May; 19(5):e1011138. PubMed ID: 37253070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human ORC/MCM density is low in active genes and correlates with replication time but does not delimit initiation zones.
    Kirstein N; Buschle A; Wu X; Krebs S; Blum H; Kremmer E; Vorberg IM; Hammerschmidt W; Lacroix L; Hyrien O; Audit B; Schepers A
    Elife; 2021 Mar; 10():. PubMed ID: 33683199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A variable fork rate affects timing of origin firing and S phase dynamics in Saccharomyces cerevisiae.
    Supady A; Klipp E; Barberis M
    J Biotechnol; 2013 Oct; 168(2):174-84. PubMed ID: 23850861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Link between ORC-origin binding mechanisms and origin activation time revealed in budding yeast.
    Hoggard T; Shor E; Müller CA; Nieduszynski CA; Fox CA
    PLoS Genet; 2013; 9(9):e1003798. PubMed ID: 24068963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficiency and equity in origin licensing to ensure complete DNA replication.
    Mei L; Cook JG
    Biochem Soc Trans; 2021 Nov; 49(5):2133-2141. PubMed ID: 34545932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavior of replication origins in Eukaryota - spatio-temporal dynamics of licensing and firing.
    Musiałek MW; Rybaczek D
    Cell Cycle; 2015; 14(14):2251-64. PubMed ID: 26030591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The consequences of differential origin licensing dynamics in distinct chromatin environments.
    Mei L; Kedziora KM; Song EA; Purvis JE; Cook JG
    Nucleic Acids Res; 2022 Sep; 50(17):9601-9620. PubMed ID: 35079814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide estimation of firing efficiencies of origins of DNA replication from time-course copy number variation data.
    Luo H; Li J; Eshaghi M; Liu J; Karuturi RK
    BMC Bioinformatics; 2010 May; 11():247. PubMed ID: 20462459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sir2 mitigates an intrinsic imbalance in origin licensing efficiency between early- and late-replicating euchromatin.
    Hoggard T; Müller CA; Nieduszynski CA; Weinreich M; Fox CA
    Proc Natl Acad Sci U S A; 2020 Jun; 117(25):14314-14321. PubMed ID: 32513739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mobile origin-licensing factors confer resistance to conflicts with RNA polymerase.
    Scherr MJ; Wahab SA; Remus D; Duderstadt KE
    Cell Rep; 2022 Mar; 38(12):110531. PubMed ID: 35320708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide identification and characterisation of human DNA replication origins by initiation site sequencing (ini-seq).
    Langley AR; Gräf S; Smith JC; Krude T
    Nucleic Acids Res; 2016 Dec; 44(21):10230-10247. PubMed ID: 27587586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model for DNA replication showing how dormant origins safeguard against replication fork failure.
    Blow JJ; Ge XQ
    EMBO Rep; 2009 Apr; 10(4):406-12. PubMed ID: 19218919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interaction networks of the budding yeast and human DNA replication-initiation proteins.
    Wu R; Amin A; Wang Z; Huang Y; Man-Hei Cheung M; Yu Z; Yang W; Liang C
    Cell Cycle; 2019; 18(6-7):723-741. PubMed ID: 30890025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Who gets a license: DNA synthesis in quiescent cells re-entering the cell cycle.
    Lee PH; Osley MA
    Curr Genet; 2021 Aug; 67(4):539-543. PubMed ID: 33682029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of DNA replication licensing in a cell cycle.
    Nishitani H; Lygerou Z
    Genes Cells; 2002 Jun; 7(6):523-34. PubMed ID: 12059957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA replication origins fire stochastically in fission yeast.
    Patel PK; Arcangioli B; Baker SP; Bensimon A; Rhind N
    Mol Biol Cell; 2006 Jan; 17(1):308-16. PubMed ID: 16251353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative BrdU immunoprecipitation method demonstrates that Fkh1 and Fkh2 are rate-limiting activators of replication origins that reprogram replication timing in G1 phase.
    Peace JM; Villwock SK; Zeytounian JL; Gan Y; Aparicio OM
    Genome Res; 2016 Mar; 26(3):365-75. PubMed ID: 26728715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental and cancer-associated plasticity of DNA replication preferentially targets GC-poor, lowly expressed and late-replicating regions.
    Wu X; Kabalane H; Kahli M; Petryk N; Laperrousaz B; Jaszczyszyn Y; Drillon G; Nicolini FE; Perot G; Robert A; Fund C; Chibon F; Xia R; Wiels J; Argoul F; Maguer-Satta V; Arneodo A; Audit B; Hyrien O
    Nucleic Acids Res; 2018 Nov; 46(19):10157-10172. PubMed ID: 30189101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Replication fork movement sets chromatin loop size and origin choice in mammalian cells.
    Courbet S; Gay S; Arnoult N; Wronka G; Anglana M; Brison O; Debatisse M
    Nature; 2008 Sep; 455(7212):557-60. PubMed ID: 18716622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleosome-directed replication origin licensing independent of a consensus DNA sequence.
    Li S; Wasserman MR; Yurieva O; Bai L; O'Donnell ME; Liu S
    Nat Commun; 2022 Aug; 13(1):4947. PubMed ID: 35999198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.