These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 37253157)

  • 1. High-Resolution Volumetric Imaging and Classification of Organisms with Standard Optical Microscopy.
    Liu Y; Unni R; Lou X; Yang M; Zheng Y
    Nano Lett; 2023 Jun; 23(11):5148-5154. PubMed ID: 37253157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optothermal rotation of micro-/nano-objects.
    Ding H; Chen Z; Ponce C; Zheng Y
    Chem Commun (Camb); 2023 Feb; 59(16):2208-2221. PubMed ID: 36723196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermophoretic Tweezers for Low-Power and Versatile Manipulation of Biological Cells.
    Lin L; Peng X; Wei X; Mao Z; Xie C; Zheng Y
    ACS Nano; 2017 Mar; 11(3):3147-3154. PubMed ID: 28230355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volumetric chemical imaging by stimulated Raman projection microscopy and tomography.
    Chen X; Zhang C; Lin P; Huang KC; Liang J; Tian J; Cheng JX
    Nat Commun; 2017 Apr; 8():15117. PubMed ID: 28436473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput widefield fluorescence imaging of 3D samples using deep learning for 2D projection image restoration.
    Forsgren E; Edlund C; Oliver M; Barnes K; Sjögren R; Jackson TR
    PLoS One; 2022; 17(5):e0264241. PubMed ID: 35588399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optofluidic rotation of living cells for single-cell tomography.
    Kolb T; Albert S; Haug M; Whyte G
    J Biophotonics; 2015 Mar; 8(3):239-46. PubMed ID: 24733809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joint subarray acoustic tweezers enable controllable cell translation, rotation, and deformation.
    Shen L; Tian Z; Yang K; Rich J; Xia J; Upreti N; Zhang J; Chen C; Hao N; Pei Z; Huang TJ
    Nat Commun; 2024 Oct; 15(1):9059. PubMed ID: 39428395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free cleared tissue microscopy and machine learning for 3D histopathology of biomaterial implants.
    Ngo TB; DeStefano S; Liu J; Su Y; Shroff H; Vishwasrao HD; Sadtler K
    J Biomed Mater Res A; 2023 Jun; 111(6):840-850. PubMed ID: 36861434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in Biological Single-Molecule Applications of Optical Tweezers and Fluorescence Microscopy.
    Hashemi Shabestari M; Meijering AEC; Roos WH; Wuite GJL; Peterman EJG
    Methods Enzymol; 2017; 582():85-119. PubMed ID: 28062046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of optical projection tomography and light-sheet fluorescence microscopy.
    Liu A; Xiao W; Li R; Liu L; Chen L
    J Microsc; 2019 Jul; 275(1):3-10. PubMed ID: 31012490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tomographic phase microscopy with 180° rotation of live cells in suspension by holographic optical tweezers.
    Habaza M; Gilboa B; Roichman Y; Shaked NT
    Opt Lett; 2015 Apr; 40(8):1881-4. PubMed ID: 25872098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards real-time photorealistic 3D holography with deep neural networks.
    Shi L; Li B; Kim C; Kellnhofer P; Matusik W
    Nature; 2021 Mar; 591(7849):234-239. PubMed ID: 33692557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Challenges and advances in optical 3D mesoscale imaging.
    Munck S; Cawthorne C; Escamilla-Ayala A; Kerstens A; Gabarre S; Wesencraft K; Battistella E; Craig R; Reynaud EG; Swoger J; McConnell G
    J Microsc; 2022 Jun; 286(3):201-219. PubMed ID: 35460574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid 3D fluorescence imaging of individual optically trapped living immune cells.
    Wolfson D; Steck M; Persson M; McNerney G; Popovich A; Goksör M; Huser T
    J Biophotonics; 2015 Mar; 8(3):208-16. PubMed ID: 24420444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled orientation and sustained rotation of biological samples in a sono-optical microfluidic device.
    Kvåle Løvmo M; Pressl B; Thalhammer G; Ritsch-Marte M
    Lab Chip; 2021 Apr; 21(8):1563-1578. PubMed ID: 33634305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photonic force optical coherence elastography for three-dimensional mechanical microscopy.
    Leartprapun N; Iyer RR; Untracht GR; Mulligan JA; Adie SG
    Nat Commun; 2018 May; 9(1):2079. PubMed ID: 29802258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optothermal rotation of micro-/nano-objects in liquids.
    Ding H; Chen Z; Ponce C; Zheng Y
    ArXiv; 2023 Jan; ():. PubMed ID: 36713256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rotation of single bacterial cells relative to the optical axis using optical tweezers.
    Carmon G; Feingold M
    Opt Lett; 2011 Jan; 36(1):40-2. PubMed ID: 21209680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programmable Multimodal Optothermal Manipulation of Synthetic Particles and Biological Cells.
    Ding H; Chen Z; Kollipara PS; Liu Y; Kim Y; Huang S; Zheng Y
    ACS Nano; 2022 Jul; 16(7):10878-10889. PubMed ID: 35816157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multicolor 3D super-resolution imaging by quantum dot stochastic optical reconstruction microscopy.
    Xu J; Tehrani KF; Kner P
    ACS Nano; 2015 Mar; 9(3):2917-25. PubMed ID: 25703291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.