BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 37253166)

  • 1. Osteogenic Activity on NaOH-Etched Three-Dimensional-Printed Poly-ɛ-Caprolactone Scaffolds in Perfusion or Spinner Flask Bioreactor.
    Seddiqi H; Abbasi-Ravasjani S; Saatchi A; Amoabediny G; Zandieh-Doulabi B; Jin J; Klein-Nulend J
    Tissue Eng Part C Methods; 2023 Jun; 29(6):230-241. PubMed ID: 37253166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(ε-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds.
    Zamani Y; Mohammadi J; Amoabediny G; Visscher DO; Helder MN; Zandieh-Doulabi B; Klein-Nulend J
    Biomed Mater; 2018 Nov; 14(1):015008. PubMed ID: 30421722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inlet flow rate of perfusion bioreactors affects fluid flow dynamics, but not oxygen concentration in 3D-printed scaffolds for bone tissue engineering: Computational analysis and experimental validation.
    Seddiqi H; Saatchi A; Amoabediny G; Helder MN; Abbasi Ravasjani S; Safari Hajat Aghaei M; Jin J; Zandieh-Doulabi B; Klein-Nulend J
    Comput Biol Med; 2020 Sep; 124():103826. PubMed ID: 32798924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfated carboxymethyl cellulose and carboxymethyl κ-carrageenan immobilization on 3D-printed poly-ε-caprolactone scaffolds differentially promote pre-osteoblast proliferation and osteogenic activity.
    Abbasi-Ravasjani S; Seddiqi H; Moghaddaszadeh A; Ghiasvand ME; Jin J; Oliaei E; Bacabac RG; Klein-Nulend J
    Front Bioeng Biotechnol; 2022; 10():957263. PubMed ID: 36213076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor.
    Sikavitsas VI; Bancroft GN; Mikos AG
    J Biomed Mater Res; 2002 Oct; 62(1):136-48. PubMed ID: 12124795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic 3D-printed PCL scaffold containing a high concentration carbonated-nanohydroxyapatite with immobilized-collagen for bone tissue engineering: enhanced bioactivity and physicomechanical characteristics.
    Moghaddaszadeh A; Seddiqi H; Najmoddin N; Abbasi Ravasjani S; Klein-Nulend J
    Biomed Mater; 2021 Oct; 16(6):. PubMed ID: 34670200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of shear stresses in collagen-glycosaminoglycan and calcium phosphate scaffolds in bone tissue-engineering bioreactors.
    Jungreuthmayer C; Donahue SW; Jaasma MJ; Al-Munajjed AA; Zanghellini J; Kelly DJ; O'Brien FJ
    Tissue Eng Part A; 2009 May; 15(5):1141-9. PubMed ID: 18831686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-printed poly(Ɛ-caprolactone) scaffold with gradient mechanical properties according to force distribution in the mandible for mandibular bone tissue engineering.
    Zamani Y; Amoabediny G; Mohammadi J; Seddiqi H; Helder MN; Zandieh-Doulabi B; Klein-Nulend J; Koolstra JH
    J Mech Behav Biomed Mater; 2020 Apr; 104():103638. PubMed ID: 32174396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extruded Bioreactor Perfusion Culture Supports the Chondrogenic Differentiation of Human Mesenchymal Stem/Stromal Cells in 3D Porous Poly(ɛ-Caprolactone) Scaffolds.
    Silva JC; Moura CS; Borrecho G; de Matos APA; da Silva CL; Cabral JMS; Bártolo PJ; Linhardt RJ; Ferreira FC
    Biotechnol J; 2020 Feb; 15(2):e1900078. PubMed ID: 31560160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic fabrication of tissue-engineered bone substitutes based on derived cancellous bone scaffold in a spinner flask bioreactor system.
    Kedong S; Wenfang L; Yanxia Z; Hong W; Ze Y; Mayasari L; Tianqing L
    Appl Biochem Biotechnol; 2014 Oct; 174(4):1331-1343. PubMed ID: 25106897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteogenic and Angiogenic Synergy of Human Adipose Stem Cells and Human Umbilical Vein Endothelial Cells Cocultured in a Modified Perfusion Bioreactor.
    Mokhtari-Jafari F; Amoabediny G; Dehghan MM; Abbasi Ravasjani S; Jabbari Fakhr M; Zamani Y
    Organogenesis; 2021 Oct; 17(3-4):56-71. PubMed ID: 34323661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaffold Pore Geometry Guides Gene Regulation and Bone-like Tissue Formation in Dynamic Cultures.
    Rubert M; Vetsch JR; Lehtoviita I; Sommer M; Zhao F; Studart AR; Müller R; Hofmann S
    Tissue Eng Part A; 2021 Sep; 27(17-18):1192-1204. PubMed ID: 33297842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An axial distribution of seeding, proliferation, and osteogenic differentiation of MC3T3-E1 cells and rat bone marrow-derived mesenchymal stem cells across a 3D Thai silk fibroin/gelatin/hydroxyapatite scaffold in a perfusion bioreactor.
    Sinlapabodin S; Amornsudthiwat P; Damrongsakkul S; Kanokpanont S
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():960-70. PubMed ID: 26478392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional fabrication of engineered bone with human bio-derived bone scaffolds in a rotating wall vessel bioreactor.
    Song K; Liu T; Cui Z; Li X; Ma X
    J Biomed Mater Res A; 2008 Aug; 86(2):323-32. PubMed ID: 17969035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Fabrication of scaffold with controlled porous structure and flow perfusion culture in vitro].
    Li X; Li DC; Wang L; Lu BH; Wang Z
    Sheng Wu Gong Cheng Xue Bao; 2005 Jul; 21(4):579-83. PubMed ID: 16176096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteoregenerative Potential of 3D-Printed Poly
    Lawrence LM; Salary RR; Miller V; Valluri A; Denning KL; Case-Perry S; Abdelgaber K; Smith S; Claudio PP; Day JB
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Three-dimensional flow perfusion culture enhances proliferation of human fetal osteoblasts in large scaffold with controlled architecture].
    Wang L; Ma ZS; Li DC; Lei W; Hu YY; Wang Z; Li X; Zhang Y; Pei GX
    Zhonghua Yi Xue Za Zhi; 2013 Jul; 93(25):1970-4. PubMed ID: 24169246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oscillating perfusion of cell suspensions through three-dimensional scaffolds enhances cell seeding efficiency and uniformity.
    Wendt D; Marsano A; Jakob M; Heberer M; Martin I
    Biotechnol Bioeng; 2003 Oct; 84(2):205-14. PubMed ID: 12966577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix.
    Nyberg E; Rindone A; Dorafshar A; Grayson WL
    Tissue Eng Part A; 2017 Jun; 23(11-12):503-514. PubMed ID: 28027692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-Printed composite scaffolds based on poly(ε-caprolactone) filled with poly(glutamic acid)-modified cellulose nanocrystals for improved bone tissue regeneration.
    Averianov I; Stepanova M; Solomakha O; Gofman I; Serdobintsev M; Blum N; Kaftuirev A; Baulin I; Nashchekina J; Lavrentieva A; Vinogradova T; Korzhikov-Vlakh V; Korzhikova-Vlakh E
    J Biomed Mater Res B Appl Biomater; 2022 Nov; 110(11):2422-2437. PubMed ID: 35618683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.