These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 37253356)
21. Validating fragment-based drug discovery for biological RNAs: lead fragments bind and remodel the TPP riboswitch specifically. Warner KD; Homan P; Weeks KM; Smith AG; Abell C; Ferré-D'Amaré AR Chem Biol; 2014 May; 21(5):591-5. PubMed ID: 24768306 [TBL] [Abstract][Full Text] [Related]
22. Insights into the cotranscriptional and translational control mechanisms of the Escherichia coli tbpA thiamin pyrophosphate riboswitch. Grondin JP; Geffroy M; Simoneau-Roy M; Chauvier A; Turcotte P; St-Pierre P; Dubé A; Moreau J; Massé E; Penedo JC; Lafontaine DA Commun Biol; 2024 Oct; 7(1):1345. PubMed ID: 39420148 [TBL] [Abstract][Full Text] [Related]
23. Imaging metabolite dynamics in living cells using a Spinach-based riboswitch. You M; Litke JL; Jaffrey SR Proc Natl Acad Sci U S A; 2015 May; 112(21):E2756-65. PubMed ID: 25964329 [TBL] [Abstract][Full Text] [Related]
24. Identification and characterisation of thiamine pyrophosphate (TPP) riboswitch in Elaeis guineensis. Subki A; Ho CL; Ismail NFN; Zainal Abidin AA; Balia Yusof ZN PLoS One; 2020; 15(7):e0235431. PubMed ID: 32726320 [TBL] [Abstract][Full Text] [Related]
25. Structural basis of thiamine pyrophosphate analogues binding to the eukaryotic riboswitch. Thore S; Frick C; Ban N J Am Chem Soc; 2008 Jul; 130(26):8116-7. PubMed ID: 18533652 [TBL] [Abstract][Full Text] [Related]
26. Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition. Edwards TE; Ferré-D'Amaré AR Structure; 2006 Sep; 14(9):1459-68. PubMed ID: 16962976 [TBL] [Abstract][Full Text] [Related]
27. Phosphate-group recognition by the aptamer domain of the thiamine pyrophosphate sensing riboswitch. Noeske J; Richter C; Stirnal E; Schwalbe H; Wöhnert J Chembiochem; 2006 Sep; 7(9):1451-6. PubMed ID: 16871614 [TBL] [Abstract][Full Text] [Related]
28. Observation of long-range tertiary interactions during ligand binding by the TPP riboswitch aptamer. Duesterberg VK; Fischer-Hwang IT; Perez CF; Hogan DW; Block SM Elife; 2015 Dec; 4():. PubMed ID: 26709838 [TBL] [Abstract][Full Text] [Related]
29. Unraveling the Role of π-Stacking Interactions in Ligand Binding to the Thiamine Pyrophosphate Riboswitch with High-level Quantum Chemical Calculations and Docking Study. Wakchaure PD; Ganguly B J Phys Chem B; 2022 Feb; 126(5):1076-1084. PubMed ID: 35089046 [TBL] [Abstract][Full Text] [Related]
30. Unraveling RNA dynamical behavior of TPP riboswitches: a comparison between Escherichia coli and Arabidopsis thaliana. Antunes D; Jorge NAN; Garcia de Souza Costa M; Passetti F; Caffarena ER Sci Rep; 2019 Mar; 9(1):4197. PubMed ID: 30862893 [TBL] [Abstract][Full Text] [Related]
31. Single-molecule FRET studies on the cotranscriptional folding of a thiamine pyrophosphate riboswitch. Uhm H; Kang W; Ha KS; Kang C; Hohng S Proc Natl Acad Sci U S A; 2018 Jan; 115(2):331-336. PubMed ID: 29279370 [TBL] [Abstract][Full Text] [Related]
32. Ensemble Switching Unveils a Kinetic Rheostat Mechanism of the Eukaryotic Thiamine Pyrophosphate Riboswitch. Ma J; Saikia N; Godar S; Hamilton GL; Ding F; Alper J; Sanabria H RNA; 2021 Apr; 27(7):771-90. PubMed ID: 33863818 [TBL] [Abstract][Full Text] [Related]
33. Regulation of the thiamine pyrophosphate (TPP)-sensing riboswitch in NMT1 mRNA from Neurospora crassa. Gong S; Du C; Wang Y FEBS Lett; 2020 Feb; 594(4):625-635. PubMed ID: 31664711 [TBL] [Abstract][Full Text] [Related]
34. Identification of novel ligands for thiamine pyrophosphate (TPP) riboswitches. Cressina E; Chen L; Moulin M; Leeper FJ; Abell C; Smith AG Biochem Soc Trans; 2011 Apr; 39(2):652-7. PubMed ID: 21428956 [TBL] [Abstract][Full Text] [Related]
35. Quantitative and predictive model of kinetic regulation by E. coli TPP riboswitches. Guedich S; Puffer-Enders B; Baltzinger M; Hoffmann G; Da Veiga C; Jossinet F; Thore S; Bec G; Ennifar E; Burnouf D; Dumas P RNA Biol; 2016; 13(4):373-90. PubMed ID: 26932506 [TBL] [Abstract][Full Text] [Related]
36. Subsite Ligand Recognition and Cooperativity in the TPP Riboswitch: Implications for Fragment-Linking in RNA Ligand Discovery. Zeller MJ; Nuthanakanti A; Li K; Aubé J; Serganov A; Weeks KM ACS Chem Biol; 2022 Feb; 17(2):438-448. PubMed ID: 35060698 [TBL] [Abstract][Full Text] [Related]
37. Entropy Driving the Mg Li J; Zhang X; Hong L; Liu Y J Phys Chem B; 2022 Nov; 126(46):9457-9464. PubMed ID: 36379020 [TBL] [Abstract][Full Text] [Related]
38. Role of a hairpin-stabilized pause in the Chauvier A; Nadon JF; Grondin JP; Lamontagne AM; Lafontaine DA RNA Biol; 2019 Aug; 16(8):1066-1073. PubMed ID: 31081713 [TBL] [Abstract][Full Text] [Related]
39. Structural studies of the purine and SAM binding riboswitches. Gilbert SD; Montange RK; Stoddard CD; Batey RT Cold Spring Harb Symp Quant Biol; 2006; 71():259-68. PubMed ID: 17381305 [TBL] [Abstract][Full Text] [Related]
40. Role of ligand binding in structural organization of add A-riboswitch aptamer: a molecular dynamics simulation. Gong Z; Zhao Y; Chen C; Xiao Y J Biomol Struct Dyn; 2011 Oct; 29(2):403-16. PubMed ID: 21875158 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]