BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 37253562)

  • 21. Optimization of the culture condition of Bacillus mucilaginous using Agaricus bisporus industrial wastewater by Plackett-Burman combined with Box-Behnken response surface method.
    Huang J; Ou Y; Zhang D; Zhang G; Pan Y
    AMB Express; 2018 Aug; 8(1):141. PubMed ID: 30171356
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect analysis of mineral salt concentrations on nosiheptide production by Streptomyces actuosus Z-10 using response surface methodology.
    Zhou W; Liu X; Zhang P; Zhou P; Shi X
    Molecules; 2014 Sep; 19(10):15507-20. PubMed ID: 25264834
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of culture medium optimization on the secondary metabolites activity of
    Liu Q; Yang J; Wang X; Wei L; Ji G
    Prep Biochem Biotechnol; 2021; 51(10):1008-1017. PubMed ID: 33656401
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Screening, Identification, and Fermentation Condition Optimization of a High-Yield 3-Methylthiopropanol Yeast and Its Aroma-Producing Characteristics.
    Zhang Y; Sun Q; Liu X; Basit RA; Ma J; Fu Z; Cheng L; Fan G; Teng C
    Foods; 2024 Jan; 13(3):. PubMed ID: 38338553
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced O-succinyl-l-homoserine production by recombinant Escherichia coli ΔIJBB*TrcmetL/pTrc-metA
    Zhu WY; Niu K; Liu P; Fan YH; Liu ZQ; Zheng YG
    J Appl Microbiol; 2021 Jun; 130(6):1960-1971. PubMed ID: 33025634
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Medium optimization for ε-poly-L-lysine production by Streptomyces diastatochromogenes using response surface methodology.
    Guo F; Zheng H; Cheng Y; Song S; Zheng Z; Jia S
    Lett Appl Microbiol; 2018 Feb; 66(2):124-131. PubMed ID: 29078007
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimization of aqueous two-phase micellar system for partial purification of L-asparaginase from Penicillium sp. grown in wheat bran as agro-industrial residue.
    Cardoso SL; de Freitas MM; de Souza PM; Homem-de-Mello M; Silveira D; Fonseca-Bazzo YM; Filho EX; Junior AP; Magalhães PO
    Braz J Microbiol; 2020 Sep; 51(3):979-988. PubMed ID: 32424715
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimal culture conditions for keratinase production by a novel thermophilic Myceliophthora thermophila strain GZUIFR-H49-1.
    Liang JD; Han YF; Zhang JW; Du W; Liang ZQ; Li ZZ
    J Appl Microbiol; 2011 Apr; 110(4):871-80. PubMed ID: 21241422
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization of fermentation conditions and rheological properties of exopolysaccharide produced by deep-sea bacterium Zunongwangia profunda SM-A87.
    Liu SB; Qiao LP; He HL; Zhang Q; Chen XL; Zhou WZ; Zhou BC; Zhang YZ
    PLoS One; 2011; 6(11):e26825. PubMed ID: 22096500
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of High-Density Fermentation Conditions for
    Yuan H; Sun Q; Wang L; Fu Z; Zhou T; Ma J; Liu X; Fan G; Teng C
    Foods; 2024 May; 13(10):. PubMed ID: 38790845
    [No Abstract]   [Full Text] [Related]  

  • 31. Enhanced L-methionine production by genetically engineered
    Zhou HY; Wu WJ; Niu K; Xu YY; Liu ZQ; Zheng YG
    3 Biotech; 2019 Mar; 9(3):96. PubMed ID: 30800607
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An economic approach for L-(+) lactic acid fermentation by Lactobacillus amylophilus GV6 using inexpensive carbon and nitrogen sources.
    Altaf M; Venkateshwar M; Srijana M; Reddy G
    J Appl Microbiol; 2007 Aug; 103(2):372-80. PubMed ID: 17650197
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Medium optimization for keratinase production in hair substrate by a new Bacillus subtilis KD-N2 using response surface methodology.
    Cai C; Zheng X
    J Ind Microbiol Biotechnol; 2009 Jul; 36(7):875-83. PubMed ID: 19350297
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improvement of tacrolimus production in Streptomyces tsukubaensis by mutagenesis and optimization of fermentation medium using Plackett-Burman design combined with response surface methodology.
    Yan L; Zhang Z; Zhang Y; Yang H; Qiu G; Wang D; Lian Y
    Biotechnol Lett; 2021 Sep; 43(9):1765-1778. PubMed ID: 34021830
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of fermentation conditions for an
    Long J; Zhao X; Liang F; Liu N; Sun Y; Xi Y
    J Biol Eng; 2018; 12():22. PubMed ID: 30337953
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving the yield of (+)-terrein from the salt-tolerant Aspergillus terreus PT06-2.
    Zhao C; Guo L; Wang L; Zhu G; Zhu W
    World J Microbiol Biotechnol; 2016 May; 32(5):77. PubMed ID: 27038947
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancement of herbicolin A production by integrated fermentation optimization and strain engineering in Pantoea agglomerans ZJU23.
    Wang H; Zhou Y; Xu S; Zhang B; Cernava T; Ma Z; Chen Y
    Microb Cell Fact; 2023 Mar; 22(1):50. PubMed ID: 36915090
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimization of the Fermentation Media and Parameters for the Bio-control Potential of
    Zhang S; Gan Y; Liu J; Zhou J; Xu B
    Front Microbiol; 2020; 11():574601. PubMed ID: 33101249
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of newly isolated Talaromyces pinophilus and statistical optimization of β-glucosidase production under solid-state fermentation.
    El-Naggar Nel-A; Haroun SA; Oweis EA; Sherief AA
    Prep Biochem Biotechnol; 2015; 45(7):712-29. PubMed ID: 25126985
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving the productivity of 19,20-epoxy-cytochalasin Q in Xylaria sp. sof11 with culture condition optimization.
    Zhang Y; Cai J; Huang L; Xu Z; Yang X; Li J; Zhu X
    Prep Biochem Biotechnol; 2016 Jul; 46(5):461-6. PubMed ID: 26444437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.