These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 37253730)
1. Hydrogel-in-hydrogel live bioprinting for guidance and control of organoids and organotypic cultures. Urciuolo A; Giobbe GG; Dong Y; Michielin F; Brandolino L; Magnussen M; Gagliano O; Selmin G; Scattolini V; Raffa P; Caccin P; Shibuya S; Scaglioni D; Wang X; Qu J; Nikolic M; Montagner M; Galea GL; Clevers H; Giomo M; De Coppi P; Elvassore N Nat Commun; 2023 May; 14(1):3128. PubMed ID: 37253730 [TBL] [Abstract][Full Text] [Related]
2. Bioprinting of Cells, Organoids and Organs-on-a-Chip Together with Hydrogels Improves Structural and Mechanical Cues. Mierke CT Cells; 2024 Oct; 13(19):. PubMed ID: 39404401 [TBL] [Abstract][Full Text] [Related]
3. Bioprinting of Cell-Laden Microfiber: Can It Become a Standard Product? Shao L; Gao Q; Xie C; Fu J; Xiang M; He Y Adv Healthc Mater; 2019 May; 8(9):e1900014. PubMed ID: 30866173 [TBL] [Abstract][Full Text] [Related]
4. 3D bioprinting of complex channels within cell-laden hydrogels. Ji S; Almeida E; Guvendiren M Acta Biomater; 2019 Sep; 95():214-224. PubMed ID: 30831327 [TBL] [Abstract][Full Text] [Related]
5. Immersion bioprinting of hyaluronan and collagen bioink-supported 3D patient-derived brain tumor organoids. Clark CC; Yoo KM; Sivakumar H; Strumpf K; Laxton AW; Tatter SB; Strowd RE; Skardal A Biomed Mater; 2022 Dec; 18(1):. PubMed ID: 36332268 [TBL] [Abstract][Full Text] [Related]
6. Challenges in Bio-fabrication of Organoid Cultures. Peng W; Datta P; Wu Y; Dey M; Ayan B; Dababneh A; Ozbolat IT Adv Exp Med Biol; 2018; 1107():53-71. PubMed ID: 29855825 [TBL] [Abstract][Full Text] [Related]
8. Message in a Scaffold: Natural Biomaterials for Three-Dimensional (3D) Bioprinting of Human Brain Organoids. Layrolle P; Payoux P; Chavanas S Biomolecules; 2022 Dec; 13(1):. PubMed ID: 36671410 [TBL] [Abstract][Full Text] [Related]
9. 3D Bioprinting of a Bioactive Composite Scaffold for Cell Delivery in Periodontal Tissue Regeneration. Miao G; Liang L; Li W; Ma C; Pan Y; Zhao H; Zhang Q; Xiao Y; Yang X Biomolecules; 2023 Jun; 13(7):. PubMed ID: 37509098 [TBL] [Abstract][Full Text] [Related]
10. Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink. Skardal A; Devarasetty M; Kang HW; Seol YJ; Forsythe SD; Bishop C; Shupe T; Soker S; Atala A J Vis Exp; 2016 Apr; (110):e53606. PubMed ID: 27166839 [TBL] [Abstract][Full Text] [Related]
11. Consistent and reproducible cultures of large-scale 3D mammary epithelial structures using an accessible bioprinting platform. Reid JA; Mollica PA; Bruno RD; Sachs PC Breast Cancer Res; 2018 Oct; 20(1):122. PubMed ID: 30305139 [TBL] [Abstract][Full Text] [Related]
12. Volumetric Bioprinting of Organoids and Optically Tuned Hydrogels to Build Liver-Like Metabolic Biofactories. Bernal PN; Bouwmeester M; Madrid-Wolff J; Falandt M; Florczak S; Rodriguez NG; Li Y; Größbacher G; Samsom RA; van Wolferen M; van der Laan LJW; Delrot P; Loterie D; Malda J; Moser C; Spee B; Levato R Adv Mater; 2022 Apr; 34(15):e2110054. PubMed ID: 35166410 [TBL] [Abstract][Full Text] [Related]
13. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects. Compaan AM; Song K; Chai W; Huang Y ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226 [TBL] [Abstract][Full Text] [Related]
14. Bisulfite-initiated crosslinking of gelatin methacryloyl hydrogels for embedded 3D bioprinting. Bilici Ç; Tatar AG; Şentürk E; Dikyol C; Koç B Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35062010 [TBL] [Abstract][Full Text] [Related]
15. 3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels. Mollica PA; Booth-Creech EN; Reid JA; Zamponi M; Sullivan SM; Palmer XL; Sachs PC; Bruno RD Acta Biomater; 2019 Sep; 95():201-213. PubMed ID: 31233891 [TBL] [Abstract][Full Text] [Related]
16. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment. Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192 [TBL] [Abstract][Full Text] [Related]
17. Protein-Functionalized Poly(ethylene glycol) Hydrogels as Scaffolds for Monolayer Organoid Culture. Wilson RL; Swaminathan G; Ettayebi K; Bomidi C; Zeng XL; Blutt SE; Estes MK; Grande-Allen KJ Tissue Eng Part C Methods; 2021 Jan; 27(1):12-23. PubMed ID: 33334213 [TBL] [Abstract][Full Text] [Related]
18. Bioprinting Organotypic Hydrogels with Improved Mesenchymal Stem Cell Remodeling and Mineralization Properties for Bone Tissue Engineering. Duarte Campos DF; Blaeser A; Buellesbach K; Sen KS; Xun W; Tillmann W; Fischer H Adv Healthc Mater; 2016 Jun; 5(11):1336-45. PubMed ID: 27072652 [TBL] [Abstract][Full Text] [Related]
19. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances. Chakraborty A; Roy A; Ravi SP; Paul A Biomater Sci; 2021 Sep; 9(19):6337-6354. PubMed ID: 34397056 [TBL] [Abstract][Full Text] [Related]
20. Biomaterials and bioengineering to guide tissue morphogenesis in epithelial organoids. Jeon EY; Sorrells L; Abaci HE Front Bioeng Biotechnol; 2022; 10():1038277. PubMed ID: 36466337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]