These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37253928)

  • 21. Improving Few- and Zero-Shot Reaction Template Prediction Using Modern Hopfield Networks.
    Seidl P; Renz P; Dyubankova N; Neves P; Verhoeven J; Wegner JK; Segler M; Hochreiter S; Klambauer G
    J Chem Inf Model; 2022 May; 62(9):2111-2120. PubMed ID: 35034452
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-Step Retrosynthesis Prediction Based on the Identification of Potential Disconnection Sites Using Molecular Substructure Fingerprints.
    Hasic H; Ishida T
    J Chem Inf Model; 2021 Feb; 61(2):641-652. PubMed ID: 33534997
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecule Edit Graph Attention Network: Modeling Chemical Reactions as Sequences of Graph Edits.
    Sacha M; Błaż M; Byrski P; Dąbrowski-Tumański P; Chromiński M; Loska R; Włodarczyk-Pruszyński P; Jastrzębski S
    J Chem Inf Model; 2021 Jul; 61(7):3273-3284. PubMed ID: 34251814
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep Graph Translation.
    Guo X; Wu L; Zhao L
    IEEE Trans Neural Netw Learn Syst; 2023 Nov; 34(11):8225-8234. PubMed ID: 35298382
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Brain graph synthesis by dual adversarial domain alignment and target graph prediction from a source graph.
    Bessadok A; Mahjoub MA; Rekik I
    Med Image Anal; 2021 Feb; 68():101902. PubMed ID: 33338871
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RetroGNN: Fast Estimation of Synthesizability for Virtual Screening and De Novo Design by Learning from Slow Retrosynthesis Software.
    Liu CH; Korablyov M; Jastrzębski S; Włodarczyk-Pruszyński P; Bengio Y; Segler M
    J Chem Inf Model; 2022 May; 62(10):2293-2300. PubMed ID: 35452226
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Critical assessment of synthetic accessibility scores in computer-assisted synthesis planning.
    Skoraczyński G; Kitlas M; Miasojedow B; Gambin A
    J Cheminform; 2023 Jan; 15(1):6. PubMed ID: 36641473
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transformer-based multitask learning for reaction prediction under low-resource circumstances.
    Qiao H; Wu Y; Zhang Y; Zhang C; Wu X; Wu Z; Zhao Q; Wang X; Li H; Duan H
    RSC Adv; 2022 Nov; 12(49):32020-32026. PubMed ID: 36380947
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy.
    Schwaller P; Petraglia R; Zullo V; Nair VH; Haeuselmann RA; Pisoni R; Bekas C; Iuliano A; Laino T
    Chem Sci; 2020 Mar; 11(12):3316-3325. PubMed ID: 34122839
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancing diversity in language based models for single-step retrosynthesis.
    Toniato A; Vaucher AC; Schwaller P; Laino T
    Digit Discov; 2023 Apr; 2(2):489-501. PubMed ID: 37065677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Algorithm for the Pruning of Synthesis Graphs.
    Zahoránszky-Kőhalmi G; Lysov N; Vorontcov I; Wang J; Soundararajan J; Metaxotos D; Mathew B; Sarosh R; Michael SG; Godfrey AG
    J Chem Inf Model; 2022 May; 62(9):2226-2238. PubMed ID: 35438992
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Graph Polish: A Novel Graph Generation Paradigm for Molecular Optimization.
    Ji C; Zheng Y; Wang R; Cai Y; Wu H
    IEEE Trans Neural Netw Learn Syst; 2023 May; 34(5):2323-2337. PubMed ID: 34520363
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advancing molecular graphs with descriptors for the prediction of chemical reaction yields.
    Yarish D; Garkot S; Grygorenko OO; Radchenko DS; Moroz YS; Gurbych O
    J Comput Chem; 2023 Jan; 44(2):76-92. PubMed ID: 36264601
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SCGG: A deep structure-conditioned graph generative model.
    Faez F; Hashemi Dijujin N; Soleymani Baghshah M; Rabiee HR
    PLoS One; 2022; 17(11):e0277887. PubMed ID: 36409705
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemist Ex Machina: Advanced Synthesis Planning by Computers.
    Molga K; Szymkuć S; Grzybowski BA
    Acc Chem Res; 2021 Mar; 54(5):1094-1106. PubMed ID: 33423460
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of Organic Reaction Outcomes Using Machine Learning.
    Coley CW; Barzilay R; Jaakkola TS; Green WH; Jensen KF
    ACS Cent Sci; 2017 May; 3(5):434-443. PubMed ID: 28573205
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments.
    Ucak UV; Ashyrmamatov I; Ko J; Lee J
    Nat Commun; 2022 Mar; 13(1):1186. PubMed ID: 35246540
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Formula: see text]: Deep Generative Network Completion.
    Tran C; Shin WY; Spitz A; Gertz M
    IEEE Trans Pattern Anal Mach Intell; 2022 Apr; 44(4):1837-1852. PubMed ID: 33074806
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Varying the Directionality of Protein Catalysts for Aldol and Retro-Aldol Reactions.
    Fujioka T; Numoto N; Akama H; Shilpa K; Oka M; Roy PK; Krishna Y; Ito N; Baker D; Oda M; Tanaka F
    Chembiochem; 2022 Jan; 23(2):e202100435. PubMed ID: 34698422
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Systematic Survey on Deep Generative Models for Graph Generation.
    Guo X; Zhao L
    IEEE Trans Pattern Anal Mach Intell; 2023 May; 45(5):5370-5390. PubMed ID: 36251910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.