These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37254234)

  • 1. A Decade of Melt Electrowriting.
    O'Neill KL; Dalton PD
    Small Methods; 2023 Jul; 7(7):e2201589. PubMed ID: 37254234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Multiweek Thermal Stability of Medical-Grade Poly(ε-caprolactone) During Melt Electrowriting.
    Böhm C; Stahlhut P; Weichhold J; Hrynevich A; Teßmar J; Dalton PD
    Small; 2022 Jan; 18(3):e2104193. PubMed ID: 34741411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melt electrospinning of poly(ε-caprolactone) scaffolds: phenomenological observations associated with collection and direct writing.
    Brown TD; Edin F; Detta N; Skelton AD; Hutmacher DW; Dalton PD
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():698-708. PubMed ID: 25491879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymers for Melt Electrowriting.
    Kade JC; Dalton PD
    Adv Healthc Mater; 2021 Jan; 10(1):e2001232. PubMed ID: 32940962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melt Electrospinning of Nanofibers from Medical-Grade Poly(ε-Caprolactone) with a Modified Nozzle.
    Großhaus C; Bakirci E; Berthel M; Hrynevich A; Kade JC; Hochleitner G; Groll J; Dalton PD
    Small; 2020 Nov; 16(44):e2003471. PubMed ID: 33048431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Printomics: the high-throughput analysis of printing parameters applied to melt electrowriting.
    Wunner FM; Mieszczanek P; Bas O; Eggert S; Maartens J; Dalton PD; De-Juan-Pardo EM; Hutmacher DW
    Biofabrication; 2019 Jan; 11(2):025004. PubMed ID: 30616231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melt Electrowriting of Thermoplastic Elastomers.
    Hochleitner G; Fürsattel E; Giesa R; Groll J; Schmidt HW; Dalton PD
    Macromol Rapid Commun; 2018 May; 39(10):e1800055. PubMed ID: 29656556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Six Processing Parameters on the Size of PCL Fibers Prepared by Melt Electrospinning Writing.
    Xie Y; Fang Q; Zhao H; Li Y; Lin Z; Chen J
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melt electrowriting of a biocompatible photo-crosslinkable poly(D,L-lactic acid)/poly(ε-caprolactone)-based material with tunable mechanical and functionalization properties.
    Darroch C; Asaro GA; Gréant C; Suku M; Pien N; van Vlierberghe S; Monaghan MG
    J Biomed Mater Res A; 2023 Jun; 111(6):851-862. PubMed ID: 36951312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melt Electrowriting of Nylon-12 Microfibers with an Open-Source 3D Printer.
    Reizabal A; Devlin BL; Paxton NC; Saiz PG; Liashenko I; Luposchainsky S; Woodruff MA; Lanceros-Mendez S; Dalton PD
    Macromol Rapid Commun; 2023 Dec; 44(24):e2300424. PubMed ID: 37821091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in melt electro writing for tissue engineering for 3D printing of microporous scaffolds for tissue engineering.
    Loewner S; Heene S; Baroth T; Heymann H; Cholewa F; Blume H; Blume C
    Front Bioeng Biotechnol; 2022; 10():896719. PubMed ID: 36061443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling Topography and Crystallinity of Melt Electrowritten Poly(ɛ-Caprolactone) Fibers.
    Blum C; Weichhold J; Hochleitner G; Stepanenko V; Würthner F; Groll J; Jungst T
    3D Print Addit Manuf; 2021 Oct; 8(5):315-321. PubMed ID: 36654937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dimension-Based Design of Melt Electrowritten Scaffolds.
    Hrynevich A; Elçi BŞ; Haigh JN; McMaster R; Youssef A; Blum C; Blunk T; Hochleitner G; Groll J; Dalton PD
    Small; 2018 May; 14(22):e1800232. PubMed ID: 29707891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melt Electrospinning Writing of Three-dimensional Poly(ε-caprolactone) Scaffolds with Controllable Morphologies for Tissue Engineering Applications.
    Wunner FM; Bas O; Saidy NT; Dalton PD; Pardo EMD; Hutmacher DW
    J Vis Exp; 2017 Dec; (130):. PubMed ID: 29364204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melt electrowriting of PLA, PCL, and composite PLA/PCL scaffolds for tissue engineering application.
    Shahverdi M; Seifi S; Akbari A; Mohammadi K; Shamloo A; Movahhedy MR
    Sci Rep; 2022 Nov; 12(1):19935. PubMed ID: 36402790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parametric control of fiber morphology and tensile mechanics in scaffolds with high aspect ratio geometry produced via melt electrowriting for musculoskeletal soft tissue engineering.
    Warren PB; Davis ZG; Fisher MB
    J Mech Behav Biomed Mater; 2019 Nov; 99():153-160. PubMed ID: 31352215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convergence of Machine Vision and Melt Electrowriting.
    Mieszczanek P; Robinson TM; Dalton PD; Hutmacher DW
    Adv Mater; 2021 Jul; 33(29):e2100519. PubMed ID: 34101929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated melt electrowritting platform with real-time process monitoring.
    Mieszczanek P; Eggert S; Corke P; Hutmacher DW
    HardwareX; 2021 Oct; 10():e00246. PubMed ID: 35607669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating Fused Deposition Modeling and Melt Electrowriting for Engineering Branched Vasculature.
    Thorsnes QS; Turner PR; Ali MA; Cabral JD
    Biomedicines; 2023 Nov; 11(12):. PubMed ID: 38137359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melt electrowriting below the critical translation speed to fabricate crimped elastomer scaffolds with non-linear extension behaviour mimicking that of ligaments and tendons.
    Hochleitner G; Chen F; Blum C; Dalton PD; Amsden B; Groll J
    Acta Biomater; 2018 May; 72():110-120. PubMed ID: 29555458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.