These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 37254295)

  • 1. Everything OLD is new again: How structural, functional, and bioinformatic advances have redefined a neglected nuclease family.
    Dot EW; Thomason LC; Chappie JS
    Mol Microbiol; 2023 Aug; 120(2):122-140. PubMed ID: 37254295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OLD family nuclease function across diverse anti-phage defense systems.
    Akritidou K; Thurtle-Schmidt BH
    Front Microbiol; 2023; 14():1268820. PubMed ID: 37840731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The full-length structure of Thermus scotoductus OLD defines the ATP hydrolysis properties and catalytic mechanism of Class 1 OLD family nucleases.
    Schiltz CJ; Adams MC; Chappie JS
    Nucleic Acids Res; 2020 Mar; 48(5):2762-2776. PubMed ID: 32009148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural characterization of Class 2 OLD family nucleases supports a two-metal catalysis mechanism for cleavage.
    Schiltz CJ; Lee A; Partlow EA; Hosford CJ; Chappie JS
    Nucleic Acids Res; 2019 Sep; 47(17):9448-9463. PubMed ID: 31400118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures and activation mechanism of the Gabija anti-phage system.
    Li J; Cheng R; Wang Z; Yuan W; Xiao J; Zhao X; Du X; Xia S; Wang L; Zhu B; Wang L
    Nature; 2024 May; 629(8011):467-473. PubMed ID: 38471529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PtuA and PtuB assemble into an inflammasome-like oligomer for anti-phage defense.
    Li Y; Shen Z; Zhang M; Yang XY; Cleary SP; Xie J; Marathe IA; Kostelic M; Greenwald J; Rish AD; Wysocki VH; Chen C; Chen Q; Fu TM; Yu Y
    Nat Struct Mol Biol; 2024 Mar; 31(3):413-423. PubMed ID: 38177683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial defense systems exhibit synergistic anti-phage activity.
    Wu Y; Garushyants SK; van den Hurk A; Aparicio-Maldonado C; Kushwaha SK; King CM; Ou Y; Todeschini TC; Clokie MRJ; Millard AD; Gençay YE; Koonin EV; Nobrega FL
    Cell Host Microbe; 2024 Apr; 32(4):557-572.e6. PubMed ID: 38402614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements.
    Makarova KS; Wolf YI; van der Oost J; Koonin EV
    Biol Direct; 2009 Aug; 4():29. PubMed ID: 19706170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial Retrons Function In Anti-Phage Defense.
    Millman A; Bernheim A; Stokar-Avihail A; Fedorenko T; Voichek M; Leavitt A; Oppenheimer-Shaanan Y; Sorek R
    Cell; 2020 Dec; 183(6):1551-1561.e12. PubMed ID: 33157039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and biochemical insights into the mechanism of the Gabija bacterial immunity system.
    Huo Y; Kong L; Zhang Y; Xiao M; Du K; Xu S; Yan X; Ma J; Wei T
    Nat Commun; 2024 Jan; 15(1):836. PubMed ID: 38282040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of phage determinants that confer sensitivity to bacterial immune systems.
    Stokar-Avihail A; Fedorenko T; Hör J; Garb J; Leavitt A; Millman A; Shulman G; Wojtania N; Melamed S; Amitai G; Sorek R
    Cell; 2023 Apr; 186(9):1863-1876.e16. PubMed ID: 37030292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures of the phage Sf6 large terminase provide new insights into DNA translocation and cleavage.
    Zhao H; Christensen TE; Kamau YN; Tang L
    Proc Natl Acad Sci U S A; 2013 May; 110(20):8075-80. PubMed ID: 23630261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contemporary Phage Biology: From Classic Models to New Insights.
    Ofir G; Sorek R
    Cell; 2018 Mar; 172(6):1260-1270. PubMed ID: 29522746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SURVEY AND SUMMARY: holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories.
    Aravind L; Makarova KS; Koonin EV
    Nucleic Acids Res; 2000 Sep; 28(18):3417-32. PubMed ID: 10982859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The origin of the bacterial immune response.
    Martínez-Borra J; González S; López-Larrea C
    Adv Exp Med Biol; 2012; 738():1-13. PubMed ID: 22399370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for the nuclease activity of a bacteriophage large terminase.
    Smits C; Chechik M; Kovalevskiy OV; Shevtsov MB; Foster AW; Alonso JC; Antson AA
    EMBO Rep; 2009 Jun; 10(6):592-8. PubMed ID: 19444313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging.
    Iyer LM; Makarova KS; Koonin EV; Aravind L
    Nucleic Acids Res; 2004; 32(17):5260-79. PubMed ID: 15466593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes.
    Burroughs AM; Allen KN; Dunaway-Mariano D; Aravind L
    J Mol Biol; 2006 Sep; 361(5):1003-34. PubMed ID: 16889794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacteria-phage interactions in natural environments.
    Díaz-Muñoz SL; Koskella B
    Adv Appl Microbiol; 2014; 89():135-83. PubMed ID: 25131402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The headful packaging nuclease of bacteriophage T4.
    Alam TI; Draper B; Kondabagil K; Rentas FJ; Ghosh-Kumar M; Sun S; Rossmann MG; Rao VB
    Mol Microbiol; 2008 Sep; 69(5):1180-90. PubMed ID: 18627466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.