These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 37254295)

  • 21. The large terminase DNA packaging motor grips DNA with its ATPase domain for cleavage by the flexible nuclease domain.
    Hilbert BJ; Hayes JA; Stone NP; Xu RG; Kelch BA
    Nucleic Acids Res; 2017 Apr; 45(6):3591-3605. PubMed ID: 28082398
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hypervariation and phase variation in the bacteriophage 'resistome'.
    Hoskisson PA; Smith MC
    Curr Opin Microbiol; 2007 Aug; 10(4):396-400. PubMed ID: 17719266
    [TBL] [Abstract][Full Text] [Related]  

  • 23. One small step for Mot1; one giant leap for other Swi2/Snf2 enzymes?
    Viswanathan R; Auble DT
    Biochim Biophys Acta; 2011 Sep; 1809(9):488-96. PubMed ID: 21658482
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The superfamily of UvrA-related ATPases includes three more subunits of putative ATP-dependent nucleases.
    Koonin EV; Gorbalenya AE
    Protein Seq Data Anal; 1992; 5(1):43-5. PubMed ID: 1492096
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction of phages, bacteria, and the human immune system: Evolutionary changes in phage therapy.
    Jariah ROA; Hakim MS
    Rev Med Virol; 2019 Sep; 29(5):e2055. PubMed ID: 31145517
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coevolution between bacterial CRISPR-Cas systems and their bacteriophages.
    Watson BNJ; Steens JA; Staals RHJ; Westra ER; van Houte S
    Cell Host Microbe; 2021 May; 29(5):715-725. PubMed ID: 33984274
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems.
    Millman A; Melamed S; Amitai G; Sorek R
    Nat Microbiol; 2020 Dec; 5(12):1608-1615. PubMed ID: 32839535
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural and functional characterization of a cold adapted TPM-domain with ATPase/ADPase activity.
    Cerutti ML; Otero LH; Smal C; Pellizza L; Goldbaum FA; Klinke S; Aran M
    J Struct Biol; 2017 Mar; 197(3):201-209. PubMed ID: 27810564
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The interaction of phages and bacteria: the co-evolutionary arms race.
    Safari F; Sharifi M; Farajnia S; Akbari B; Karimi Baba Ahmadi M; Negahdaripour M; Ghasemi Y
    Crit Rev Biotechnol; 2020 Mar; 40(2):119-137. PubMed ID: 31793351
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA-mediated coupling of ATPase, translocase and nuclease activities of a Type ISP restriction-modification enzyme.
    Chand MK; Carle V; Anuvind KG; Saikrishnan K
    Nucleic Acids Res; 2020 Mar; 48(5):2594-2603. PubMed ID: 31974580
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair.
    Lieber MR
    Bioessays; 1997 Mar; 19(3):233-40. PubMed ID: 9080773
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toprim--a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins.
    Aravind L; Leipe DD; Koonin EV
    Nucleic Acids Res; 1998 Sep; 26(18):4205-13. PubMed ID: 9722641
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Advances of Researches on Anti-phage Mechanisms of Host].
    Mao P; Zeng W; Hong Y; Feng M; Xu Z
    Bing Du Xue Bao; 2015 Jul; 31(4):474-9. PubMed ID: 26524923
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Viral proteins activate PARIS-mediated tRNA degradation and viral tRNAs rescue infection.
    Burman N; Belukhina S; Depardieu F; Wilkinson RA; Skutel M; Santiago-Frangos A; Graham AB; Livenskyi A; Chechenina A; Morozova N; Zahl T; Henriques WS; Buyukyoruk M; Rouillon C; Shyrokova L; Kurata T; Hauryliuk V; Severinov K; Groseille J; Thierry A; Koszul R; Tesson F; Bernheim A; Bikard D; Wiedenheft B; Isaev A
    bioRxiv; 2024 Jan; ():. PubMed ID: 38260645
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploiting phage strategies to modulate bacterial transcription.
    Wahl MC; Sen R
    Transcription; 2019; 10(4-5):222-230. PubMed ID: 31663818
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combining Mutations That Inhibit Two Distinct Steps of the ATP Hydrolysis Cycle Restores Wild-Type Function in the Lipopolysaccharide Transporter and Shows that ATP Binding Triggers Transport.
    Simpson BW; Pahil KS; Owens TW; Lundstedt EA; Davis RM; Kahne D; Ruiz N
    mBio; 2019 Aug; 10(4):. PubMed ID: 31431556
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sequence-Function Relationships in Phage-Encoded Bacterial Cell Wall Lytic Enzymes and Their Implications for Phage-Derived Product Design.
    Vázquez R; García E; García P
    J Virol; 2021 Jun; 95(14):e0032121. PubMed ID: 33883227
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent advances in phage defense systems and potential overcoming strategies.
    Yuan X; Huang Z; Zhu Z; Zhang J; Wu Q; Xue L; Wang J; Ding Y
    Biotechnol Adv; 2023; 65():108152. PubMed ID: 37037289
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of the mycobacterial AdnAB DNA motor provides insights into the evolution of bacterial motor-nuclease machines.
    Unciuleac MC; Shuman S
    J Biol Chem; 2010 Jan; 285(4):2632-41. PubMed ID: 19920138
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA targeting and interference by a bacterial Argonaute nuclease.
    Kuzmenko A; Oguienko A; Esyunina D; Yudin D; Petrova M; Kudinova A; Maslova O; Ninova M; Ryazansky S; Leach D; Aravin AA; Kulbachinskiy A
    Nature; 2020 Nov; 587(7835):632-637. PubMed ID: 32731256
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.