These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 37254344)
1. Revealing the influence of microbiota on the flavor of kombucha during natural fermentation process by metagenomic and GC-MS analysis. Yao L; Zhang J; Lu J; Chen D; Song S; Wang H; Sun M; Feng T Food Res Int; 2023 Jul; 169():112909. PubMed ID: 37254344 [TBL] [Abstract][Full Text] [Related]
2. Microbial interactions and dynamic changes of volatile flavor compounds during the fermentation of traditional kombucha. Meng Y; Wang X; Li Y; Chen J; Chen X Food Chem; 2024 Jan; 430():137060. PubMed ID: 37544149 [TBL] [Abstract][Full Text] [Related]
3. Dynamic Changes in Microbial Communities, Physicochemical Properties, and Flavor of Kombucha Made from Fu-Brick Tea. Wu X; Zhang Y; Zhang B; Tian H; Liang Y; Dang H; Zhao Y Foods; 2023 Nov; 12(23):. PubMed ID: 38231678 [TBL] [Abstract][Full Text] [Related]
4. Identification of volatile compounds and metabolic pathway during ultrasound-assisted kombucha fermentation by HS-SPME-GC/MS combined with metabolomic analysis. Wang Z; Ahmad W; Zhu A; Geng W; Kang W; Ouyang Q; Chen Q Ultrason Sonochem; 2023 Mar; 94():106339. PubMed ID: 36842214 [TBL] [Abstract][Full Text] [Related]
6. Microbial Diversity and Interaction Specificity in Kombucha Tea Fermentations. Landis EA; Fogarty E; Edwards JC; Popa O; Eren AM; Wolfe BE mSystems; 2022 Jun; 7(3):e0015722. PubMed ID: 35670539 [TBL] [Abstract][Full Text] [Related]
7. Headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) and odor activity value (OAV) to reveal the flavor characteristics of ripened Pu-erh tea by co-fermentation. Zheng Y; Zhang C; Ren D; Bai R; Li W; Wang J; Shan Z; Dong W; Yi L Front Nutr; 2023; 10():1138783. PubMed ID: 37051132 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of microbiota-induced changes in biochemical, sensory properties and volatile profile of kombucha produced by reformed microbial community. Kilmanoglu H; Yigit Cinar A; Durak MZ Food Chem X; 2024 Jun; 22():101469. PubMed ID: 38808165 [TBL] [Abstract][Full Text] [Related]
9. Metabolome-microbiome signatures in the fermented beverage, Kombucha. Villarreal-Soto SA; Bouajila J; Pace M; Leech J; Cotter PD; Souchard JP; Taillandier P; Beaufort S Int J Food Microbiol; 2020 Nov; 333():108778. PubMed ID: 32731153 [TBL] [Abstract][Full Text] [Related]
10. Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods. Coton M; Pawtowski A; Taminiau B; Burgaud G; Deniel F; Coulloumme-Labarthe L; Fall A; Daube G; Coton E FEMS Microbiol Ecol; 2017 May; 93(5):. PubMed ID: 28430940 [TBL] [Abstract][Full Text] [Related]
11. Storage time and temperature affect microbial dynamics of yeasts and acetic acid bacteria in a kombucha beverage. Grassi A; Cristani C; Palla M; Di Giorgi R; Giovannetti M; Agnolucci M Int J Food Microbiol; 2022 Dec; 382():109934. PubMed ID: 36130465 [TBL] [Abstract][Full Text] [Related]
12. Microbial Diversity and Characteristics of Kombucha as Revealed by Metagenomic and Physicochemical Analysis. Kaashyap M; Cohen M; Mantri N Nutrients; 2021 Dec; 13(12):. PubMed ID: 34960001 [TBL] [Abstract][Full Text] [Related]
13. Changes in the chemical compositions and biological properties of kombucha beverages made from black teas and pineapple peels and cores. Phung LT; Kitwetcharoen H; Chamnipa N; Boonchot N; Thanonkeo S; Tippayawat P; Klanrit P; Yamada M; Thanonkeo P Sci Rep; 2023 May; 13(1):7859. PubMed ID: 37188725 [TBL] [Abstract][Full Text] [Related]
14. Metagenomic, organoleptic profiling, and nutritional properties of fermented kombucha tea substituted with recycled substrates. Selvaraj S; Gurumurthy K Front Microbiol; 2024; 15():1367697. PubMed ID: 38873151 [TBL] [Abstract][Full Text] [Related]
15. Tailor-made microbial consortium for Kombucha fermentation: Microbiota-induced biochemical changes and biofilm formation. Savary O; Mounier J; Thierry A; Poirier E; Jourdren J; Maillard MB; Penland M; Decamps C; Coton E; Coton M Food Res Int; 2021 Sep; 147():110549. PubMed ID: 34399526 [TBL] [Abstract][Full Text] [Related]
16. Microbial and Chemical Profiles of Commercial Kombucha Products. Yang J; Lagishetty V; Kurnia P; Henning SM; Ahdoot AI; Jacobs JP Nutrients; 2022 Feb; 14(3):. PubMed ID: 35277029 [TBL] [Abstract][Full Text] [Related]
17. The chemistry and sensory characteristics of new herbal tea-based kombuchas. Zhang J; Van Mullem J; Dias DR; Schwan RF J Food Sci; 2021 Mar; 86(3):740-748. PubMed ID: 33580510 [TBL] [Abstract][Full Text] [Related]
18. Effects of Monascus purpureus on ripe Pu-erh tea in different fermentation methods and identification of characteristic volatile compounds. Tian D; Huang G; Ren L; Li Y; Yu J; Lu Q; Yang Y; Deng X; Li Y; Zhou H Food Chem; 2024 May; 440():138249. PubMed ID: 38183708 [TBL] [Abstract][Full Text] [Related]
19. Variation in Volatile Compounds of Raw Pu-Erh Tea upon Steeping Process by Gas Chromatography-Ion Mobility Spectrometry and Characterization of the Aroma-Active Compounds in Tea Infusion Using Gas Chromatography-Olfactometry-Mass Spectrometry. Feng T; Sun J; Wang K; Song S; Chen D; Zhuang H; Lu J; Li D; Meng X; Shi M; Yao L; Ho CT J Agric Food Chem; 2022 Oct; 70(42):13741-13753. PubMed ID: 36225119 [TBL] [Abstract][Full Text] [Related]
20. Efficiency of freeze- and spray-dried microbial preparation as active dried starter culture in kombucha fermentation. Phan Van T; Nguyen QD; Nguyen NN; Do AD J Sci Food Agric; 2024 Nov; 104(14):8707-8719. PubMed ID: 38924118 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]