These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37254346)

  • 1. Oleofoams stabilized by monoacylglycerides: Impact of chain length and concentration.
    Grossi M; Fang B; Rao J; Chen B
    Food Res Int; 2023 Jul; 169():112914. PubMed ID: 37254346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of Pulse Protein Foam-Templated Oleogels into Oleofoams for Improved Baking Application.
    Mohanan A; Harrison K; Cooper DML; Nickerson MT; Ghosh S
    Foods; 2022 Sep; 11(18):. PubMed ID: 36141019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilisation of oleofoams by lauric acid and its glycerol esters.
    Qiu C; Wang S; Wang Y; Lee WJ; Fu J; Binks BP; Wang Y
    Food Chem; 2022 Aug; 386():132776. PubMed ID: 35509162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the ratio between fatty alcohol and fatty acid on foaming properties of whipped oleogels.
    Callau M; Sow-Kébé K; Jenkins N; Fameau AL
    Food Chem; 2020 Dec; 333():127403. PubMed ID: 32653679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and characterization of stable oleofoam based on medium-long chain diacylglycerol and β-sitosterol.
    Qiu C; Lei M; Lee WJ; Zhang N; Wang Y
    Food Chem; 2021 Jul; 350():129275. PubMed ID: 33601090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oleofoams: Properties of Crystal-Coated Bubbles from Whipped Oleogels-Evidence for Pickering Stabilization.
    Gunes DZ; Murith M; Godefroid J; Pelloux C; Deyber H; Schafer O; Breton O
    Langmuir; 2017 Feb; 33(6):1563-1575. PubMed ID: 28139122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wax based oleogels and their application in sponge cakes.
    Wettlaufer T; Flöter E
    Food Funct; 2022 Sep; 13(18):9419-9433. PubMed ID: 35971805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal-reversible lacquer wax-based oleofoams in dual stabilization with high ambient stability.
    Gu X; Du L; Meng Z
    Food Res Int; 2023 May; 167():112650. PubMed ID: 37087239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Glyceryl Monoolein Addition on the Foaming Properties and Stability of Whipped Oleogels.
    Andriotis EG; Monou PK; Komis G; Bouropoulos N; Ritzoulis C; Delis G; Kiosis E; Arsenos G; Fatouros DG
    Gels; 2022 Oct; 8(11):. PubMed ID: 36354613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of crystallisation of native phytosterols and monoacylglycerols on foaming properties of whipped oleogels.
    Truong T; Prakash S; Bhandari B
    Food Chem; 2019 Jul; 285():86-93. PubMed ID: 30797379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Food-grade monoglyceride oil foams: the effect of tempering on foamability, foam stability and rheological properties.
    Heymans R; Tavernier I; Danthine S; Rimaux T; Van der Meeren P; Dewettinck K
    Food Funct; 2018 Jun; 9(6):3143-3154. PubMed ID: 29790526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gelation and foaming properties of fatty acid mixtures in sunflower oil.
    Zheng R; Zheng Q; Hu B; Cao Y; Lan Y
    J Sci Food Agric; 2022 Jul; 102(9):3513-3521. PubMed ID: 34841529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of behenic acid-ethyl cellulose oleogel stabilized Pickering emulsions as low calorie fat replacer.
    Ahmadi P; Tabibiazar M; Roufegarinejad L; Babazadeh A
    Int J Biol Macromol; 2020 May; 150():974-981. PubMed ID: 31760020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of lutein ester-loaded oleogels developed by monostearin and sunflower oil.
    Jiang Z; Geng S; Liu C; Jiang J; Liu B
    J Food Biochem; 2019 Nov; 43(11):e12992. PubMed ID: 31373024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel strategy to fabricate stable oil foams with sucrose ester surfactant.
    Liu Y; Binks BP
    J Colloid Interface Sci; 2021 Jul; 594():204-216. PubMed ID: 33761395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioparticles of flaxseed protein and mucilage enhance the physical and oxidative stability of flaxseed oil emulsions as a potential natural alternative for synthetic surfactants.
    Nikbakht Nasrabadi M; Goli SAH; Sedaghat Doost A; Dewettinck K; Van der Meeren P
    Colloids Surf B Biointerfaces; 2019 Dec; 184():110489. PubMed ID: 31522025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Pickering and network stabilization in water-in-oil emulsions.
    Ghosh S; Tran T; Rousseau D
    Langmuir; 2011 Jun; 27(11):6589-97. PubMed ID: 21528852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aqueous foams stabilized by chitin nanocrystals.
    Tzoumaki MV; Karefyllakis D; Moschakis T; Biliaderis CG; Scholten E
    Soft Matter; 2015 Aug; 11(31):6245-53. PubMed ID: 26154562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of X-ray Microcomputed Tomography for the Static and Dynamic Characterization of the Microstructure of Oleofoams.
    Metilli L; Storm M; Marathe S; Lazidis A; Marty-Terrade S; Simone E
    Langmuir; 2022 Feb; 38(4):1638-1650. PubMed ID: 35050635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Esterification of lignin with long chain fatty acids for the stabilization of oil-in-water Pickering emulsions.
    Shorey R; Mekonnen TH
    Int J Biol Macromol; 2023 Mar; 230():123143. PubMed ID: 36641016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.