These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 37254663)
41. Microfluidic systems for modeling human development. Bonner MG; Gudapati H; Mou X; Musah S Development; 2022 Feb; 149(3):. PubMed ID: 35156682 [TBL] [Abstract][Full Text] [Related]
42. Lung-on-a-chip: the future of respiratory disease models and pharmacological studies. Shrestha J; Razavi Bazaz S; Aboulkheyr Es H; Yaghobian Azari D; Thierry B; Ebrahimi Warkiani M; Ghadiri M Crit Rev Biotechnol; 2020 Mar; 40(2):213-230. PubMed ID: 31906727 [TBL] [Abstract][Full Text] [Related]
43. Nano-Bio Interactions in Cancer: From Therapeutics Delivery to Early Detection. Liu Y; Wang J; Xiong Q; Hornburg D; Tao W; Farokhzad OC Acc Chem Res; 2021 Jan; 54(2):291-301. PubMed ID: 33180454 [TBL] [Abstract][Full Text] [Related]
44. Microfluidics-based in vivo mimetic systems for the study of cellular biology. Kim D; Wu X; Young AT; Haynes CL Acc Chem Res; 2014 Apr; 47(4):1165-73. PubMed ID: 24555566 [TBL] [Abstract][Full Text] [Related]
45. Microfluidic systems to study tissue barriers to immunotherapy. Ramirez A; Amosu M; Lee P; Maisel K Drug Deliv Transl Res; 2021 Dec; 11(6):2414-2429. PubMed ID: 34215998 [TBL] [Abstract][Full Text] [Related]
46. Cancer-on-a-chip systems at the frontier of nanomedicine. Zhang YS; Zhang YN; Zhang W Drug Discov Today; 2017 Sep; 22(9):1392-1399. PubMed ID: 28390929 [TBL] [Abstract][Full Text] [Related]
47. Capturing the spatial and temporal dynamics of tumor stroma for on-chip optimization of microenvironmental targeting nanomedicine. Imparato G; Urciuolo F; Mazio C; Netti PA Lab Chip; 2022 Dec; 23(1):25-43. PubMed ID: 36305728 [TBL] [Abstract][Full Text] [Related]
48. Microfluidic organ-on-a-chip models of human liver tissue. Moradi E; Jalili-Firoozinezhad S; Solati-Hashjin M Acta Biomater; 2020 Oct; 116():67-83. PubMed ID: 32890749 [TBL] [Abstract][Full Text] [Related]
49. Microfluidic Gut-on-a-Chip: Fundamentals and Challenges. Thomas DP; Zhang J; Nguyen NT; Ta HT Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671971 [TBL] [Abstract][Full Text] [Related]
50. Microfluidic endothelium-on-a-chip development, from in vivo to in vitro experimental models. Bulboacă AE; Boarescu PM; Melincovici CS; Mihu CM Rom J Morphol Embryol; 2020; 61(1):15-23. PubMed ID: 32747891 [TBL] [Abstract][Full Text] [Related]
51. Microfluidic Organs-on-a-Chip for Modeling Human Infectious Diseases. Wang Y; Wang P; Qin J Acc Chem Res; 2021 Sep; 54(18):3550-3562. PubMed ID: 34459199 [TBL] [Abstract][Full Text] [Related]
52. Applications of Microfluidics and Organ-on-a-Chip in Cancer Research. Regmi S; Poudel C; Adhikari R; Luo KQ Biosensors (Basel); 2022 Jun; 12(7):. PubMed ID: 35884262 [TBL] [Abstract][Full Text] [Related]
53. Recent Advances of Microfluidic Platforms for Controlled Drug Delivery in Nanomedicine. Ejeta F Drug Des Devel Ther; 2021; 15():3881-3891. PubMed ID: 34531650 [TBL] [Abstract][Full Text] [Related]
54. Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy. Valencia PM; Pridgen EM; Rhee M; Langer R; Farokhzad OC; Karnik R ACS Nano; 2013 Dec; 7(12):10671-80. PubMed ID: 24215426 [TBL] [Abstract][Full Text] [Related]