These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 37254910)

  • 1. Dynamic population normalisation in wastewater-based epidemiology for improved understanding of the SARS-CoV-2 prevalence: a multi-site study.
    Sweetapple C; Wade MJ; Melville-Shreeve P; Chen AS; Lilley C; Irving J; Grimsley JMS; Bunce JT
    J Water Health; 2023 May; 21(5):625-642. PubMed ID: 37254910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wastewater-based epidemiology (WBE) for SARS-CoV-2 - A review focussing on the significance of the sewer network using a Dublin city catchment case study.
    Mac Mahon J; Criado Monleon AJ; Gill LW; O'Sullivan JJ; Meijer WG
    Water Sci Technol; 2022 Sep; 86(6):1402-1425. PubMed ID: 36178814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Building knowledge of university campus population dynamics to enhance near-to-source sewage surveillance for SARS-CoV-2 detection.
    Sweetapple C; Melville-Shreeve P; Chen AS; Grimsley JMS; Bunce JT; Gaze W; Fielding S; Wade MJ
    Sci Total Environ; 2022 Feb; 806(Pt 1):150406. PubMed ID: 34571237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of high-frequency in-pipe SARS-CoV-2 wastewater-based surveillance to concurrent COVID-19 random clinical testing on a public U.S. university campus.
    Wright J; Driver EM; Bowes DA; Johnston B; Halden RU
    Sci Total Environ; 2022 May; 820():152877. PubMed ID: 34998780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wastewater-based epidemiology for comprehensive community health diagnostics in a national surveillance study: Mining biochemical markers in wastewater.
    Kasprzyk-Hordern B; Sims N; Farkas K; Jagadeesan K; Proctor K; Wade MJ; Jones DL
    J Hazard Mater; 2023 May; 450():130989. PubMed ID: 36848844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring of SARS-CoV-2 in wastewater: what normalisation for improved understanding of epidemic trends?
    Sakarovitch C; Schlosser O; Courtois S; Proust-Lima C; Couallier J; Pétrau A; Litrico X; Loret JF
    J Water Health; 2022 Apr; 20(4):712-726. PubMed ID: 35482387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multistate assessment of population normalization factors for wastewater-based epidemiology of COVID-19.
    Rainey AL; Liang S; Bisesi JH; Sabo-Attwood T; Maurelli AT
    PLoS One; 2023; 18(4):e0284370. PubMed ID: 37043469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomarkers selection for population normalization in SARS-CoV-2 wastewater-based epidemiology.
    Hsu SY; Bayati M; Li C; Hsieh HY; Belenchia A; Klutts J; Zemmer SA; Reynolds M; Semkiw E; Johnson HY; Foley T; Wieberg CG; Wenzel J; Johnson MC; Lin CH
    Water Res; 2022 Sep; 223():118985. PubMed ID: 36030667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial neural network-based estimation of COVID-19 case numbers and effective reproduction rate using wastewater-based epidemiology.
    Jiang G; Wu J; Weidhaas J; Li X; Chen Y; Mueller J; Li J; Kumar M; Zhou X; Arora S; Haramoto E; Sherchan S; Orive G; Lertxundi U; Honda R; Kitajima M; Jackson G
    Water Res; 2022 Jun; 218():118451. PubMed ID: 35447417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wastewater monitoring of COVID-19: a perspective from Scotland.
    Fang Z; Roberts AMI; Mayer CD; Frantsuzova A; Potts JM; Cameron GJ; Singleton PTR; Currie I
    J Water Health; 2022 Dec; 20(12):1688-1700. PubMed ID: 36573673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring SARS-CoV-2 Using Infoveillance, National Reporting Data, and Wastewater in Wales, United Kingdom: Mixed Methods Study.
    Cuff JP; Dighe SN; Watson SE; Badell-Grau RA; Weightman AJ; Jones DL; Kille P
    JMIR Infodemiology; 2023 Nov; 3():e43891. PubMed ID: 37903300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SARS-CoV-2 shedding sources in wastewater and implications for wastewater-based epidemiology.
    Li X; Kulandaivelu J; Guo Y; Zhang S; Shi J; O'Brien J; Arora S; Kumar M; Sherchan SP; Honda R; Jackson G; Luby SP; Jiang G
    J Hazard Mater; 2022 Jun; 432():128667. PubMed ID: 35339834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of wastewater-based epidemiology to SARS-CoV-2 screening in Brazil and the United States.
    Henriques TB; Cassini ST; de Pinho Keller R
    J Water Health; 2023 Mar; 21(3):343-353. PubMed ID: 37338314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of wastewater-based epidemiology for SARS-CoV-2 in developing countries: Cumulative evidence from South Africa supports sentinel site surveillance to guide public health decision-making.
    Iwu-Jaja C; Ndlovu NL; Rachida S; Yousif M; Taukobong S; Macheke M; Mhlanga L; van Schalkwyk C; Pulliam JRC; Moultrie T; le Roux W; Schaefer L; Pocock G; Coetzee LZ; Mans J; Bux F; Pillay L; de Villiers D; du Toit AP; Jambo D; Gomba A; Groenink S; Madgewick N; van der Walt M; Mutshembele A; Berkowitz N; Suchard M; McCarthy K;
    Sci Total Environ; 2023 Dec; 903():165817. PubMed ID: 37506905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the impact of sample storage, handling, and technical ability on the decay and recovery of SARS-CoV-2 in wastewater.
    Beattie RE; Blackwood AD; Clerkin T; Dinga C; Noble RT
    PLoS One; 2022; 17(6):e0270659. PubMed ID: 35749532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Normalisation of SARS-CoV-2 concentrations in wastewater: The use of flow, electrical conductivity and crAssphage.
    Langeveld J; Schilperoort R; Heijnen L; Elsinga G; Schapendonk CEM; Fanoy E; de Schepper EIT; Koopmans MPG; de Graaf M; Medema G
    Sci Total Environ; 2023 Mar; 865():161196. PubMed ID: 36581271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of gene targets and sampling regimes for SARS-CoV-2 quantification for wastewater epidemiology in UK prisons.
    Jobling K; Quintela-Baluja M; Hassard F; Adamou P; Blackburn A; Research Team T; McIntyre-Nolan S; O'Mara O; Romalde JL; Di Cesare M; Graham DW
    J Water Health; 2024 Jan; 22(1):64-76. PubMed ID: 38295073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zooming in to the neighborhood level: A year-long wastewater-based epidemiology monitoring campaign for COVID-19 in small intraurban catchments.
    Zammit I; Badia S; Mejías-Molina C; Rusiñol M; Bofill-Mas S; Borrego CM; Corominas L
    Sci Total Environ; 2024 Jan; 907():167811. PubMed ID: 37852481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementing wastewater surveillance for SARS-CoV-2 on a university campus: Lessons learned.
    Wartell BA; Proano C; Bakalian L; Kaya D; Croft K; McCreary M; Lichtenstein N; Miske V; Arcellana P; Boyer J; Benschoten IV; Anderson M; Crabb A; Gilson S; Gourley A; Wheeler T; Trest B; Bowman G; Kjellerup BV
    Water Environ Res; 2022 Nov; 94(11):e10807. PubMed ID: 36372781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An exploration of challenges associated with machine learning for time series forecasting of COVID-19 community spread using wastewater-based epidemiological data.
    Vaughan L; Zhang M; Gu H; Rose JB; Naughton CC; Medema G; Allan V; Roiko A; Blackall L; Zamyadi A
    Sci Total Environ; 2023 Feb; 858(Pt 1):159748. PubMed ID: 36306840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.