These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 37254947)
21. Systematic Method for the Exploration, Representation, and Classification of the Diphenylalanine Solvatomorphic Space. Chaker Z; Chervy P; Boulard Y; Bressanelli S; Retailleau P; Paternostre M; Charpentier T J Phys Chem B; 2021 Aug; 125(33):9454-9466. PubMed ID: 34382396 [TBL] [Abstract][Full Text] [Related]
22. Peptide Coassembly to Enhance Piezoelectricity for Energy Harvesting. Yuan H; Han P; Tao Z; Xue B; Guo Y; Levy D; Hu W; Wang Y; Cao Y; Gazit E; Yang R ACS Appl Mater Interfaces; 2022 Feb; 14(5):6538-6546. PubMed ID: 35089003 [TBL] [Abstract][Full Text] [Related]
23. Control of the Biodegradability of Piezoelectric Peptide Nanotubes Integrated with Hydrophobic Porphyrin. Kim Y; Park H; Kim Y; Lee C; Park H; Lee JH ACS Appl Mater Interfaces; 2022 Aug; 14(34):38778-38785. PubMed ID: 35983899 [TBL] [Abstract][Full Text] [Related]
24. Fmoc-diphenylalanine gelating nanoarchitectonics: A simplistic peptide self-assembly to meet complex applications. Wang Y; Geng Q; Zhang Y; Adler-Abramovich L; Fan X; Mei D; Gazit E; Tao K J Colloid Interface Sci; 2023 Apr; 636():113-133. PubMed ID: 36623365 [TBL] [Abstract][Full Text] [Related]
25. Self-assembly and application of diphenylalanine-based nanostructures. Yan X; Zhu P; Li J Chem Soc Rev; 2010 Jun; 39(6):1877-90. PubMed ID: 20502791 [TBL] [Abstract][Full Text] [Related]
26. Synthesis, spectroscopy and photochemistry of novel branched fluorescent nitro-stilbene derivatives with benzopheonone groups. Gao F; Liu J; Peng H; Hu N; Li H; Zhang S J Fluoresc; 2010 May; 20(3):703-12. PubMed ID: 20177746 [TBL] [Abstract][Full Text] [Related]
27. Hierarchical, interface-induced self-assembly of diphenylalanine: formation of peptide nanofibers and microvesicles. Huang R; Su R; Qi W; Zhao J; He Z Nanotechnology; 2011 Jun; 22(24):245609. PubMed ID: 21543826 [TBL] [Abstract][Full Text] [Related]
28. Recent advances in the fabrication and bio-medical applications of self-assembled dipeptide nanostructures. Chibh S; Mishra J; Kour A; Chauhan VS; Panda JJ Nanomedicine (Lond); 2021 Jan; 16(2):139-163. PubMed ID: 33480272 [TBL] [Abstract][Full Text] [Related]
29. Polar-π Interactions Promote Self-assembly of Dipeptides into Laminated Nanofibers. Zhang H; Lou S; Yu Z Langmuir; 2019 Apr; 35(13):4710-4717. PubMed ID: 30836752 [TBL] [Abstract][Full Text] [Related]
30. Conformational dynamics and aggregation behavior of piezoelectric diphenylalanine peptides in an external electric field. Kelly CM; Northey T; Ryan K; Brooks BR; Kholkin AL; Rodriguez BJ; Buchete NV Biophys Chem; 2015 Jan; 196():16-24. PubMed ID: 25240398 [TBL] [Abstract][Full Text] [Related]
31. Molecular modeling and computational study of the chiral-dependent structures and properties of self-assembling diphenylalanine peptide nanotubes. Bystrov VS; Zelenovskiy PS; Nuraeva AS; Kopyl S; Zhulyabina OA; Tverdislov VA J Mol Model; 2019 Jun; 25(7):199. PubMed ID: 31240406 [TBL] [Abstract][Full Text] [Related]
32. Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes. Dinesh B; Squillaci MA; Ménard-Moyon C; Samorì P; Bianco A Nanoscale; 2015 Oct; 7(38):15873-9. PubMed ID: 26359907 [TBL] [Abstract][Full Text] [Related]
33. Controlling the Physical Dimensions of Peptide Nanotubes by Supramolecular Polymer Coassembly. Adler-Abramovich L; Marco P; Arnon ZA; Creasey RC; Michaels TC; Levin A; Scurr DJ; Roberts CJ; Knowles TP; Tendler SJ; Gazit E ACS Nano; 2016 Aug; 10(8):7436-42. PubMed ID: 27351519 [TBL] [Abstract][Full Text] [Related]
34. Antibacterial and Antibiofilm Properties of Self-Assembled Dipeptide Nanotubes. Soares I; Rodrigues I; da Costa PM; Gales L Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613773 [TBL] [Abstract][Full Text] [Related]
35. A self-assembling fluorescent dipeptide conjugate for cell labelling. Kirkham S; Hamley IW; Smith AM; Gouveia RM; Connon CJ; Reza M; Ruokolainen J Colloids Surf B Biointerfaces; 2016 Jan; 137():104-8. PubMed ID: 25990811 [TBL] [Abstract][Full Text] [Related]
36. Self-assembly of diphenylalanine peptides on graphene Rissanou AN; Keliri A; Arnittali M; Harmandaris V Phys Chem Chem Phys; 2020 Dec; 22(47):27645-27657. PubMed ID: 33283818 [TBL] [Abstract][Full Text] [Related]
37. Controlled fiberization of dipeptide in merging phases leads to collagen-level strength and opto/electric mechanofunctionalities. Chen J; Yan K; Xiong S; Wei T; Wu X; Chu PK Biomaterials; 2019 Jul; 208():1-7. PubMed ID: 30981093 [TBL] [Abstract][Full Text] [Related]
38. Fluorescence and Morphology of Self-Assembled Nucleobases and Their Diphenylalanine Hybrid Aggregates. Avitabile C; Diaferia C; Roviello V; Altamura D; Giannini C; Vitagliano L; Accardo A; Romanelli A Chemistry; 2019 Nov; 25(65):14850-14857. PubMed ID: 31566814 [TBL] [Abstract][Full Text] [Related]
39. Effect of solvent on the self-assembly of dialanine and diphenylalanine peptides. Rissanou AN; Georgilis E; Kasotakis E; Mitraki A; Harmandaris V J Phys Chem B; 2013 Apr; 117(15):3962-75. PubMed ID: 23510047 [TBL] [Abstract][Full Text] [Related]
40. Sodium chloride's effect on self-assembly of diphenylalanine bilayer. Kwon J; Lee M; Na S J Comput Chem; 2016 Jul; 37(19):1839-46. PubMed ID: 27241039 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]