BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37255027)

  • 1. Cuprous Oxide-Based Cationic Hydrogel by the Integration of Enrichment and Immobilization of Radioiodine (I
    Yan C; Li J; Tan C; Chen G; Zhao Q; Chen Y; He P; Luo Y; Duan T; Lei J; Zhu L
    ACS Appl Mater Interfaces; 2023 Jun; 15(23):28135-28148. PubMed ID: 37255027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced removal of radioactive iodine anions from wastewater using modified bentonite: Experimental and theoretical study.
    Yang J; Tai W; Wu F; Shi K; Jia T; Su Y; Liu T; Mocilac P; Hou X; Chen X
    Chemosphere; 2022 Apr; 292():133401. PubMed ID: 34953880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unraveling the mechanism of iodate adsorption by anthocyanin-rich fruit waste as green adsorbents for Applications of radioactive iodine remediation in water environment.
    Phanthuwongpakdee J; Babel S
    Environ Res; 2024 Jun; 250():118502. PubMed ID: 38365049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined use of tannic acid-type organic composite adsorbents and ozone for simultaneous removal of various kinds of radionuclides in river water.
    Tachibana Y; Kalak T; Nogami M; Tanaka M
    Water Res; 2020 Sep; 182():116032. PubMed ID: 32574820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal capacity and chemical speciation of groundwater iodide (I
    Li D; Kaplan DI; Sams A; Powell BA; Knox AS
    J Environ Radioact; 2018 Dec; 192():505-512. PubMed ID: 30114621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Record High Iodate Anion Capture by a Redox-Active Cationic Polymer Network.
    Guo Q; Li J; Zhao Y; Li L; He L; Zhao F; Zhai F; Zhang M; Chen L; Chai Z; Wang S
    Angew Chem Int Ed Engl; 2024 Jul; 63(27):e202400849. PubMed ID: 38656826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterization of Ag@Cu-based MOFs as efficient adsorbents for iodine anions removal from aqueous solutions.
    Gong CH; Li ZY; Chen KW; Gu AT; Wang P; Yang Y
    J Environ Radioact; 2023 Sep; 265():107211. PubMed ID: 37331177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capture of iodine in solution and vapor phases by newly synthesized and characterized encapsulated Cu
    Yadollahi M; Hamadi H; Nobakht V
    J Hazard Mater; 2020 Nov; 399():122872. PubMed ID: 32521316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silver-functionalized silica aerogels and their application in the removal of iodine from aqueous environments.
    Asmussen RM; Matyáš J; Qafoku NP; Kruger AA
    J Hazard Mater; 2019 Nov; 379():119364. PubMed ID: 29753522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cu/Cu
    Seon J; Hwang Y
    J Hazard Mater; 2021 May; 409():124415. PubMed ID: 33183840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of cationic biomass lignosulfonate hydrogel for the efficient adsorption of Cr(VI) in wastewater with low pH.
    Wei S; Chen W; Li Z; Liu Z; Xu A
    Environ Technol; 2023 Jun; 44(14):2134-2147. PubMed ID: 34962213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of materials for iodine and technetium immobilization through sorption and redox-driven processes.
    Pearce CI; Cordova EA; Garcia WL; Saslow SA; Cantrell KJ; Morad JW; Qafoku O; Matyáš J; Plymale AE; Chatterjee S; Kang J; Colon FC; Levitskaia TG; Rigali MJ; Szecsody JE; Heald SM; Balasubramanian M; Wang S; Sun DT; Queen WL; Bontchev R; Moore RC; Freedman VL
    Sci Total Environ; 2020 May; 716():136167. PubMed ID: 31955840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of Iodine Species (I
    Saha S; Roy S; Mathi P; Mondal JA
    J Phys Chem A; 2020 Aug; 124(33):6726-6734. PubMed ID: 32786661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dried powder of corn stalk as a potential biosorbent for the removal of iodate from aqueous solution.
    Zhang K; Chen T
    J Environ Radioact; 2018 Oct; 190-191():73-80. PubMed ID: 29758390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of CMC-g-P(SPMA) super adsorbent hydrogels: Exploring their capacity for MB removal from waste water.
    Salama A
    Int J Biol Macromol; 2018 Jan; 106():940-946. PubMed ID: 28834704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Turning calcium carbonate into a cost-effective wastewater-sorbing material by occluding waste dye.
    Zhao DH; Gao HW
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):97-105. PubMed ID: 19263103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of hydrotalcite in soil immobilization of iodate (IO
    Zhang D; Liu XY; Zhao HT; Yang L; Lü T; Jin MQ
    RSC Adv; 2018 Jun; 8(38):21084-21091. PubMed ID: 35539934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of Radioactive Iodine Using Silver/Iron Oxide Composite Nanoadsorbents.
    Zia MR; Raza MA; Park SH; Irfan N; Ahmed R; Park JE; Jeon J; Mushtaq S
    Nanomaterials (Basel); 2021 Feb; 11(3):. PubMed ID: 33652803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iodine immobilization by silver-impregnated granular activated carbon in cementitious systems.
    Li D; Kaplan DI; Price KA; Seaman JC; Roberts K; Xu C; Lin P; Xing W; Schwehr K; Santschi PH
    J Environ Radioact; 2019 Nov; 208-209():106017. PubMed ID: 31325735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellulose-based hydrogel for adsorptive removal of cationic dyes from aqueous solution: isotherms and kinetics.
    Poornachandhra C; Jayabalakrishnan RM; Prasanthrajan M; Balasubramanian G; Lakshmanan A; Selvakumar S; John JE
    RSC Adv; 2023 Jan; 13(7):4757-4774. PubMed ID: 36760285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.