These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 37255080)
1. Resource allocation accounts for the large variability of rate-yield phenotypes across bacterial strains. Baldazzi V; Ropers D; Gouzé JL; Gedeon T; de Jong H Elife; 2023 May; 12():. PubMed ID: 37255080 [TBL] [Abstract][Full Text] [Related]
2. A Minimalistic Resource Allocation Model to Explain Ubiquitous Increase in Protein Expression with Growth Rate. Barenholz U; Keren L; Segal E; Milo R PLoS One; 2016; 11(4):e0153344. PubMed ID: 27073913 [TBL] [Abstract][Full Text] [Related]
3. Modelling overflow metabolism in Escherichia coli with flux balance analysis incorporating differential proteomic efficiencies of energy pathways. Zeng H; Yang A BMC Syst Biol; 2019 Jan; 13(1):3. PubMed ID: 30630470 [TBL] [Abstract][Full Text] [Related]
4. Optimal proteome allocation and the temperature dependence of microbial growth laws. Mairet F; Gouzé JL; de Jong H NPJ Syst Biol Appl; 2021 Mar; 7(1):14. PubMed ID: 33686098 [TBL] [Abstract][Full Text] [Related]
6. Enhanced production of heterologous proteins by a synthetic microbial community: Conditions and trade-offs. Mauri M; Gouzé JL; de Jong H; Cinquemani E PLoS Comput Biol; 2020 Apr; 16(4):e1007795. PubMed ID: 32282794 [TBL] [Abstract][Full Text] [Related]
7. Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria. Hui S; Silverman JM; Chen SS; Erickson DW; Basan M; Wang J; Hwa T; Williamson JR Mol Syst Biol; 2015 Feb; 11(1):784. PubMed ID: 25678603 [TBL] [Abstract][Full Text] [Related]
8. Proteome reallocation in Escherichia coli with increasing specific growth rate. Peebo K; Valgepea K; Maser A; Nahku R; Adamberg K; Vilu R Mol Biosyst; 2015 Apr; 11(4):1184-93. PubMed ID: 25712329 [TBL] [Abstract][Full Text] [Related]
9. Efficient production of myo-inositol in Escherichia coli through metabolic engineering. You R; Wang L; Shi C; Chen H; Zhang S; Hu M; Tao Y Microb Cell Fact; 2020 May; 19(1):109. PubMed ID: 32448266 [TBL] [Abstract][Full Text] [Related]
10. Quantitative prediction of genome-wide resource allocation in bacteria. Goelzer A; Muntel J; Chubukov V; Jules M; Prestel E; Nölker R; Mariadassou M; Aymerich S; Hecker M; Noirot P; Becher D; Fromion V Metab Eng; 2015 Nov; 32():232-243. PubMed ID: 26498510 [TBL] [Abstract][Full Text] [Related]
11. A counting-strategy together with a spatial structured model describes RNA polymerase and ribosome availability in Escherichia coli. Kremling A Metab Eng; 2021 Sep; 67():145-152. PubMed ID: 34174424 [TBL] [Abstract][Full Text] [Related]
12. A comparative analysis of industrial Escherichia coli K-12 and B strains in high-glucose batch cultivations on process-, transcriptome- and proteome level. Marisch K; Bayer K; Scharl T; Mairhofer J; Krempl PM; Hummel K; Razzazi-Fazeli E; Striedner G PLoS One; 2013; 8(8):e70516. PubMed ID: 23950949 [TBL] [Abstract][Full Text] [Related]
13. Quantification of proteomic and metabolic burdens predicts growth retardation and overflow metabolism in recombinant Escherichia coli. Zeng H; Yang A Biotechnol Bioeng; 2019 Jun; 116(6):1484-1495. PubMed ID: 30712260 [TBL] [Abstract][Full Text] [Related]
14. Principles of proteome allocation are revealed using proteomic data and genome-scale models. Yang L; Yurkovich JT; Lloyd CJ; Ebrahim A; Saunders MA; Palsson BO Sci Rep; 2016 Nov; 6():36734. PubMed ID: 27857205 [TBL] [Abstract][Full Text] [Related]
15. Principal component analysis of proteomics (PCAP) as a tool to direct metabolic engineering. Alonso-Gutierrez J; Kim EM; Batth TS; Cho N; Hu Q; Chan LJG; Petzold CJ; Hillson NJ; Adams PD; Keasling JD; Garcia Martin H; Lee TS Metab Eng; 2015 Mar; 28():123-133. PubMed ID: 25554074 [TBL] [Abstract][Full Text] [Related]
16. A global resource allocation strategy governs growth transition kinetics of Escherichia coli. Erickson DW; Schink SJ; Patsalo V; Williamson JR; Gerland U; Hwa T Nature; 2017 Nov; 551(7678):119-123. PubMed ID: 29072300 [TBL] [Abstract][Full Text] [Related]
17. A yield-cost tradeoff governs Mori M; Marinari E; De Martino A NPJ Syst Biol Appl; 2019; 5():16. PubMed ID: 31069113 [TBL] [Abstract][Full Text] [Related]
18. Plasticity of growth laws tunes resource allocation strategies in bacteria. Mukherjee A; Chang YF; Huang Y; Benites NC; Ammar L; Ealy J; Polk M; Basan M PLoS Comput Biol; 2024 Jan; 20(1):e1011735. PubMed ID: 38190385 [TBL] [Abstract][Full Text] [Related]
19. Synthetic acid stress-tolerance modules improve growth robustness and lysine productivity of industrial Escherichia coli in fermentation at low pH. Yao X; Liu P; Chen B; Wang X; Tao F; Lin Z; Yang X Microb Cell Fact; 2022 Apr; 21(1):68. PubMed ID: 35459210 [TBL] [Abstract][Full Text] [Related]
20. Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli. Harder BJ; Bettenbrock K; Klamt S Metab Eng; 2016 Nov; 38():29-37. PubMed ID: 27269589 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]