These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 3725562)

  • 21. Variability of kinetic variables during gait in unilateral transtibial amputees.
    Svoboda Z; Janura M; Cabell L; Elfmark M
    Prosthet Orthot Int; 2012 Jun; 36(2):225-30. PubMed ID: 22440580
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bilateralism of EMG profiles in human locomotion.
    Arsenault AB; Winter DA; Marteniuk RG
    Am J Phys Med; 1986 Feb; 65(1):1-16. PubMed ID: 3946590
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The neuromuscular demands of altering foot progression angle during gait in asymptomatic individuals and those with knee osteoarthritis.
    Rutherford DJ; Hubley-Kozey CL; Stanish WD
    Osteoarthritis Cartilage; 2010 May; 18(5):654-61. PubMed ID: 20188227
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of prosthetic foot type and visual alteration on postural steadiness in below-knee amputees.
    Arifin N; Abu Osman NA; Ali S; Wan Abas WA
    Biomed Eng Online; 2014 Mar; 13(1):23. PubMed ID: 24597518
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dose-response effects of customised foot orthoses on lower limb muscle activity and plantar pressures in pronated foot type.
    Telfer S; Abbott M; Steultjens M; Rafferty D; Woodburn J
    Gait Posture; 2013 Jul; 38(3):443-9. PubMed ID: 23391752
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparison of two prosthetic feet on the multi-joint and multi-plane kinetic gait compensations in individuals with a unilateral trans-tibial amputation.
    Underwood HA; Tokuno CD; Eng JJ
    Clin Biomech (Bristol); 2004 Jul; 19(6):609-16. PubMed ID: 15234485
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stride kinematics and knee joint kinetics of child amputee gait.
    Hoy MG; Whiting WC; Zernicke RF
    Arch Phys Med Rehabil; 1982 Feb; 63(2):74-82. PubMed ID: 7059274
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation.
    Eberly VJ; Mulroy SJ; Gronley JK; Perry J; Yule WJ; Burnfield JM
    Prosthet Orthot Int; 2014 Dec; 38(6):447-55. PubMed ID: 24135259
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Variability of electromyographic patterns for level-surface walking through a range of self-selected speeds.
    Shiavi R; Champion S; Freeman F; Griffin P
    Bull Prosthet Res; 1981; 10-35():5-14. PubMed ID: 7332833
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Newly designed computer controlled knee-ankle-foot orthosis (Intelligent Orthosis).
    Suga T; Kameyama O; Ogawa R; Matsuura M; Oka H
    Prosthet Orthot Int; 1998 Dec; 22(3):230-9. PubMed ID: 9881611
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shock absorption of below-knee prostheses: a comparison between the SACH and the Multiflex foot.
    van Leeuwen JL; Speth LA; Daanen HA
    J Biomech; 1990; 23(5):441-6. PubMed ID: 2373717
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of sagittal plane prosthetic alignment on standing trans-tibial amputee knee loads.
    Blumentritt S; Schmalz T; Jarasch R; Schneider M
    Prosthet Orthot Int; 1999 Dec; 23(3):231-8. PubMed ID: 10890598
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differentiation between solid-ankle cushioned heel and energy storage and return prosthetic foot based on step-to-step transition cost.
    Wezenberg D; Cutti AG; Bruno A; Houdijk H
    J Rehabil Res Dev; 2014; 51(10):1579-90. PubMed ID: 25860285
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Elderly unilateral transtibial amputee gait on an inclined walkway: a biomechanical analysis.
    Vickers DR; Palk C; McIntosh AS; Beatty KT
    Gait Posture; 2008 Apr; 27(3):518-29. PubMed ID: 17707643
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of gender on the quadriceps-to-hamstrings coactivation ratio during different exercises.
    Harput G; Soylu AR; Ertan H; Ergun N; Mattacola CG
    J Sport Rehabil; 2014 Feb; 23(1):36-43. PubMed ID: 24084227
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Knee instability after acute ACL rupture affects movement patterns during the mid-stance phase of gait.
    Hurd WJ; Snyder-Mackler L
    J Orthop Res; 2007 Oct; 25(10):1369-77. PubMed ID: 17557321
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of postural steadiness in below-knee amputees when wearing different prosthetic feet during various sensory conditions using the Biodex® Stability System.
    Arifin N; Abu Osman NA; Ali S; Gholizadeh H; Wan Abas WA
    Proc Inst Mech Eng H; 2015 Jul; 229(7):491-8. PubMed ID: 26019139
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative biomechanical analysis of energy-storing prosthetic feet.
    Menard MR; McBride ME; Sanderson DJ; Murray DD
    Arch Phys Med Rehabil; 1992 May; 73(5):451-8. PubMed ID: 1580773
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The normal peak of electromyographic activity of the quadriceps femoris muscle in the stair cycle.
    Tata JA; Peat M; Grahame RE; Quanbury AO
    Anat Anz; 1983; 153(2):175-88. PubMed ID: 6859545
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of ladder parameters on asymmetric patterns of force exertion during below-knee amputees climbing ladders.
    Li W; Li S; Fu Y; Chen J
    Int J Occup Saf Ergon; 2017 Mar; 23(1):21-32. PubMed ID: 27231803
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.