These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37255664)

  • 1. Volatile organic compounds (VOCs) as a rapid means for assessing the source of coprolites.
    Zhao W; Whelton HL; Blong JC; Shillito LM; Jenkins DL; Bull ID
    iScience; 2023 Jun; 26(6):106806. PubMed ID: 37255664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pre-Clovis occupation of the Americas identified by human fecal biomarkers in coprolites from Paisley Caves, Oregon.
    Shillito LM; Whelton HL; Blong JC; Jenkins DL; Connolly TJ; Bull ID
    Sci Adv; 2020 Jul; 6(29):eaba6404. PubMed ID: 32743069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating polyvinylidene fluoride - carbon black composites as solid phase microextraction coatings for the detection of urinary volatile organic compounds by gas chromatography-mass spectrometry.
    Woollam M; Grocki P; Schulz E; Siegel AP; Deiss F; Agarwal M
    J Chromatogr A; 2022 Dec; 1685():463606. PubMed ID: 36370629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing parasite epidemiology in the epidemiological importance of Patagonian Late Holocene rockshelters using carnivore coprolites in the past: new data from Piedra Parada, Argentina.
    Fugassa MH; Fernández PM; Bellelli C; Carballido Calatayud M
    Parasitology; 2022 Oct; 149(12):1556-1564. PubMed ID: 35924600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved quantification of livestock associated odorous volatile organic compounds in a standard flow-through system using solid-phase microextraction and gas chromatography-mass spectrometry.
    Yang X; Zhu W; Koziel JA; Cai L; Jenks WS; Laor Y; Leeuwen JH; Hoff SJ
    J Chromatogr A; 2015 Oct; 1414():31-40. PubMed ID: 26456221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution coproecology: using coprolites to reconstruct the habits and habitats of New Zealand's extinct upland moa (Megalapteryx didinus).
    Wood JR; Wilmshurst JM; Wagstaff SJ; Worthy TH; Rawlence NJ; Cooper A
    PLoS One; 2012; 7(6):e40025. PubMed ID: 22768206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a headspace-solid phase microextraction gas chromatography-high resolution mass spectrometry method for analyzing volatile organic compounds in urine: Application in breast cancer biomarker discovery.
    Li X; Wen X; Luo Z; Tian Y; Qian C; Zhang J; Ling R; Duan Y
    Clin Chim Acta; 2023 Feb; 540():117236. PubMed ID: 36716910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Canine-Inspired Chemometric Analysis of Volatile Organic Compounds in Urine Headspace to Distinguish Prostate Cancer in Mice and Men.
    Woollam M; Siegel AP; Munshi A; Liu S; Tholpady S; Gardner T; Li BY; Yokota H; Agarwal M
    Cancers (Basel); 2023 Feb; 15(4):. PubMed ID: 36831694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effectiveness of high-throughput miniaturized sorbent- and solid phase microextraction techniques combined with gas chromatography-mass spectrometry analysis for a rapid screening of volatile and semi-volatile composition of wines--a comparative study.
    Mendes B; Gonçalves J; Câmara JS
    Talanta; 2012 Jan; 88():79-94. PubMed ID: 22265473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of SPME-Arrow-GC/MS Method for Determination of Free and Bound Volatile Organic Compounds from Grape Skins.
    Šikuten I; Štambuk P; Karoglan Kontić J; Maletić E; Tomaz I; Preiner D
    Molecules; 2021 Dec; 26(23):. PubMed ID: 34885990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soil bacterial diffusible and volatile organic compounds inhibit Phytophthora capsici and promote plant growth.
    Syed-Ab-Rahman SF; Carvalhais LC; Chua ET; Chung FY; Moyle PM; Eltanahy EG; Schenk PM
    Sci Total Environ; 2019 Nov; 692():267-280. PubMed ID: 31349168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variable VOCs in plastic culture flasks and their potential impact on cell volatile biomarkers.
    Chu Y; Zhou J; Ge D; Lu Y; Zou X; Xia L; Huang C; Shen C; Chu Y
    Anal Bioanal Chem; 2020 Sep; 412(22):5397-5408. PubMed ID: 32564118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Headspace solid-phase microextraction (HS-SPME) combined with GC-MS as a process analytical technology (PAT) tool for monitoring the cultivation of C. tetani.
    Ghader M; Shokoufi N; Es-Haghi A; Kargosha K
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Apr; 1083():222-232. PubMed ID: 29550684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The steroids of 2000-year-old human coprolites.
    Lin DS; Connor WE; Napton LK; Heizer RF
    J Lipid Res; 1978 Feb; 19(2):215-21. PubMed ID: 344825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volatile organic compounds emitted by filamentous fungi isolated from flooded homes after Hurricane Sandy show toxicity in a Drosophila bioassay.
    Zhao G; Yin G; Inamdar AA; Luo J; Zhang N; Yang I; Buckley B; Bennett JW
    Indoor Air; 2017 May; 27(3):518-528. PubMed ID: 27748984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of decomposition volatile organic compounds from surface-deposited and submerged porcine remains.
    Irish L; Rennie SR; Parkes GMB; Williams A
    Sci Justice; 2019 Sep; 59(5):503-515. PubMed ID: 31472795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular analysis of semen-like odor emitted by chestnut flowers using neutral desorption extractive atmospheric pressure chemical ionization mass spectrometry.
    Zhang X; Ji Y; Zhang Y; Liu F; Chen H; Liu J; Handberg ES; Chagovets VV; Chingin K
    Anal Bioanal Chem; 2019 Jul; 411(18):4103-4112. PubMed ID: 30450509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation of volatile organic compounds in stemwood using solid-phase microextraction.
    Wajs A; Pranovich A; Reunanen M; Willför S; Holmbom B
    Phytochem Anal; 2006; 17(2):91-101. PubMed ID: 16634285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volatolomics approach by HS-SPME-GC-MS and multivariate analysis to discriminate olive tree varieties infected by Xylella fastidiosa.
    Mentana A; Camele I; Mang SM; De Benedetto GE; Frisullo S; Centonze D
    Phytochem Anal; 2019 Nov; 30(6):623-634. PubMed ID: 31020714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Profiling Volatile Compounds in Blackcurrant Fruit using Headspace Solid-Phase Microextraction Coupled to Gas Chromatography-Mass Spectrometry.
    Pott DM; Vallarino JG; Osorio S
    J Vis Exp; 2021 Jun; (172):. PubMed ID: 34180890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.