These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 37255926)
1. Structure-Property Correlations in Aqueous Binary Na Khalid S; Pianta N; Bonizzoni S; Ferrara C; Lorenzi R; Paleari A; Johansson P; Mustarelli P; Ruffo R J Phys Chem C Nanomater Interfaces; 2023 May; 127(20):9823-9832. PubMed ID: 37255926 [TBL] [Abstract][Full Text] [Related]
2. Recent Progress in "Water-in-Salt" Electrolytes Toward Non-lithium Based Rechargeable Batteries. Wang Y; Meng X; Sun J; Liu Y; Hou L Front Chem; 2020; 8():595. PubMed ID: 32850632 [TBL] [Abstract][Full Text] [Related]
3. Tuning the Electrolyte Solvation Structure via a Nonaqueous Co-Solvent to Enable High-Voltage Aqueous Lithium-Ion Batteries. Liu D; Yuan L; Li X; Chen J; Xiong R; Meng J; Zhu S; Huang Y ACS Appl Mater Interfaces; 2022 Apr; 14(15):17585-17593. PubMed ID: 35385244 [TBL] [Abstract][Full Text] [Related]
4. Understanding the electrochemistry of "water-in-salt" electrolytes: basal plane highly ordered pyrolytic graphite as a model system. Iamprasertkun P; Ejigu A; Dryfe RAW Chem Sci; 2020 Jun; 11(27):6978-6989. PubMed ID: 34122994 [TBL] [Abstract][Full Text] [Related]
5. Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage. Zhang C; Zhang L; Yu G Acc Chem Res; 2020 Aug; 53(8):1648-1659. PubMed ID: 32672933 [TBL] [Abstract][Full Text] [Related]
6. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
7. A promising water-in-salt electrolyte for aqueous based electrochemical energy storage cells with a wide potential window: highly concentrated HCOOK. Liu T; Tang L; Luo H; Cheng S; Liu M Chem Commun (Camb); 2019 Nov; 55(85):12817-12820. PubMed ID: 31595889 [TBL] [Abstract][Full Text] [Related]
8. A Universal Approach to Aqueous Energy Storage via Ultralow-Cost Electrolyte with Super-Concentrated Sugar as Hydrogen-Bond-Regulated Solute. Bi H; Wang X; Liu H; He Y; Wang W; Deng W; Ma X; Wang Y; Rao W; Chai Y; Ma H; Li R; Chen J; Wang Y; Xue M Adv Mater; 2020 Apr; 32(16):e2000074. PubMed ID: 32130746 [TBL] [Abstract][Full Text] [Related]
9. Hydrogen-Bonding Interactions in Hybrid Aqueous/Nonaqueous Electrolytes Enable Low-Cost and Long-Lifespan Sodium-Ion Storage. Chua R; Cai Y; Lim PQ; Kumar S; Satish R; Manalastas W; Ren H; Verma V; Meng S; Morris SA; Kidkhunthod P; Bai J; Srinivasan M ACS Appl Mater Interfaces; 2020 May; 12(20):22862-22872. PubMed ID: 32343545 [TBL] [Abstract][Full Text] [Related]
10. Traditional salt-in-water electrolyte Sundaram MM; Appadoo D Dalton Trans; 2020 Aug; 49(33):11743-11755. PubMed ID: 32797136 [TBL] [Abstract][Full Text] [Related]
11. Physicochemical and Electrochemical Properties of Water-in-Salt Electrolytes. Amiri M; Bélanger D ChemSusChem; 2021 Jun; 14(12):2487-2500. PubMed ID: 33973406 [TBL] [Abstract][Full Text] [Related]
12. Promoting Rechargeable Batteries Operated at Low Temperature. Dong X; Wang YG; Xia Y Acc Chem Res; 2021 Oct; 54(20):3883-3894. PubMed ID: 34622652 [TBL] [Abstract][Full Text] [Related]
13. High-Voltage Aqueous Na-Ion Battery Enabled by Inert-Cation-Assisted Water-in-Salt Electrolyte. Jiang L; Liu L; Yue J; Zhang Q; Zhou A; Borodin O; Suo L; Li H; Chen L; Xu K; Hu YS Adv Mater; 2020 Jan; 32(2):e1904427. PubMed ID: 31782981 [TBL] [Abstract][Full Text] [Related]
14. Improvement of Electrochemical Stability Using the Eutectic Composition of a Ternary Molten Salt System for Highly Concentrated Electrolytes for Na-Ion Batteries. Hwang J; Sivasengaran AN; Yang H; Yamamoto H; Takeuchi T; Matsumoto K; Hagiwara R ACS Appl Mater Interfaces; 2021 Jan; 13(2):2538-2546. PubMed ID: 33400498 [TBL] [Abstract][Full Text] [Related]
15. In Situ Investigation of Li and Na Ion Transport with Single Nanowire Electrochemical Devices. Xu X; Yan M; Tian X; Yang C; Shi M; Wei Q; Xu L; Mai L Nano Lett; 2015 Jun; 15(6):3879-84. PubMed ID: 25989463 [TBL] [Abstract][Full Text] [Related]
16. Water-Ion Interaction Determines the Mobility of Ions in Highly Concentrated Aqueous Electrolytes. Kim J; Koo B; Khammari A; Park K; Lee H; Kwak K; Cho M ACS Appl Mater Interfaces; 2024 Feb; 16(8):10033-10041. PubMed ID: 38373218 [TBL] [Abstract][Full Text] [Related]
17. Probing the Electrode-Electrolyte Interface of a Model K-Ion Battery Electrode─The Origin of Rate Capability Discrepancy between Aqueous and Non-Aqueous Electrolytes. Lemaire P; Serva A; Salanne M; Rousse G; Perrot H; Sel O; Tarascon JM ACS Appl Mater Interfaces; 2022 May; 14(18):20835-20847. PubMed ID: 35481776 [TBL] [Abstract][Full Text] [Related]
18. A systematic study of solvation structure of asymmetric lithium salts in water. Fang L; Nguyen H; Gonzalez R; Li T Nanotechnology; 2024 Jun; 35(36):. PubMed ID: 38776879 [TBL] [Abstract][Full Text] [Related]
19. Water-Salt Oligomers Enable Supersoluble Electrolytes for High-Performance Aqueous Batteries. Cai S; Chu X; Liu C; Lai H; Chen H; Jiang Y; Guo F; Xu Z; Wang C; Gao C Adv Mater; 2021 Apr; 33(13):e2007470. PubMed ID: 33634517 [TBL] [Abstract][Full Text] [Related]
20. Intermolecular Interactions and Electrochemical Studies on Highly Concentrated Acetate-Based Water-in-Salt and Ionic Liquid Electrolytes. Amiri M; Bélanger D J Phys Chem B; 2023 Apr; 127(13):2979-2990. PubMed ID: 36952601 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]