BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37256074)

  • 1. Mushroom body output neurons MBON-a1/a2 define an odor intensity channel that regulates behavioral odor discrimination learning in larval
    Mohamed A; Malekou I; Sim T; O'Kane CJ; Maait Y; Scullion B; Masuda-Nakagawa LM
    Front Physiol; 2023; 14():1111244. PubMed ID: 37256074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Octopaminergic neurons have multiple targets in
    Wong JYH; Wan BA; Bland T; Montagnese M; McLachlan AD; O'Kane CJ; Zhang SW; Masuda-Nakagawa LM
    Learn Mem; 2021 Feb; 28(2):53-71. PubMed ID: 33452115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A single GABAergic neuron mediates feedback of odor-evoked signals in the mushroom body of larval Drosophila.
    Masuda-Nakagawa LM; Ito K; Awasaki T; O'Kane CJ
    Front Neural Circuits; 2014; 8():35. PubMed ID: 24782716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aversive Training Induces Both Presynaptic and Postsynaptic Suppression in
    Zhang X; Noyes NC; Zeng J; Li Y; Davis RL
    J Neurosci; 2019 Nov; 39(46):9164-9172. PubMed ID: 31558620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localized olfactory representation in mushroom bodies of Drosophila larvae.
    Masuda-Nakagawa LM; Gendre N; O'Kane CJ; Stocker RF
    Proc Natl Acad Sci U S A; 2009 Jun; 106(25):10314-9. PubMed ID: 19502424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualization of learning-induced synaptic plasticity in output neurons of the Drosophila mushroom body γ-lobe.
    Hancock CE; Rostami V; Rachad EY; Deimel SH; Nawrot MP; Fiala A
    Sci Rep; 2022 Jun; 12(1):10421. PubMed ID: 35729203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A connectome of a learning and memory center in the adult
    Takemura SY; Aso Y; Hige T; Wong A; Lu Z; Xu CS; Rivlin PK; Hess H; Zhao T; Parag T; Berg S; Huang G; Katz W; Olbris DJ; Plaza S; Umayam L; Aniceto R; Chang LA; Lauchie S; Ogundeyi O; Ordish C; Shinomiya A; Sigmund C; Takemura S; Tran J; Turner GC; Rubin GM; Scheffer LK
    Elife; 2017 Jul; 6():. PubMed ID: 28718765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The anterior paired lateral neuron normalizes odour-evoked activity in the
    Prisco L; Deimel SH; Yeliseyeva H; Fiala A; Tavosanis G
    Elife; 2021 Dec; 10():. PubMed ID: 34964714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separate But Interactive Parallel Olfactory Processing Streams Governed by Different Types of GABAergic Feedback Neurons in the Mushroom Body of a Basal Insect.
    Takahashi N; Nishino H; Domae M; Mizunami M
    J Neurosci; 2019 Oct; 39(44):8690-8704. PubMed ID: 31548236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimality of sparse olfactory representations is not affected by network plasticity.
    Assisi C; Stopfer M; Bazhenov M
    PLoS Comput Biol; 2020 Feb; 16(2):e1007461. PubMed ID: 32012160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereotypic and random patterns of connectivity in the larval mushroom body calyx of Drosophila.
    Masuda-Nakagawa LM; Tanaka NK; O'Kane CJ
    Proc Natl Acad Sci U S A; 2005 Dec; 102(52):19027-32. PubMed ID: 16357192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A linear discriminant analysis model of imbalanced associative learning in the mushroom body compartment.
    Lipshutz D; Kashalikar A; Farashahi S; Chklovskii DB
    PLoS Comput Biol; 2023 Feb; 19(2):e1010864. PubMed ID: 36745688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity of defined mushroom body output neurons underlies learned olfactory behavior in Drosophila.
    Owald D; Felsenberg J; Talbot CB; Das G; Perisse E; Huetteroth W; Waddell S
    Neuron; 2015 Apr; 86(2):417-27. PubMed ID: 25864636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of Sleep by Dopaminergic Inputs to the Drosophila Mushroom Body.
    Sitaraman D; Aso Y; Rubin GM; Nitabach MN
    Front Neural Circuits; 2015; 9():73. PubMed ID: 26617493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Input-timing-dependent plasticity at incoming synapses of the mushroom body facilitates olfactory learning in Drosophila.
    Qiao J; Yang S; Geng H; Yung WH; Ke Y
    Curr Biol; 2022 Nov; 32(22):4869-4880.e4. PubMed ID: 36265490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propagation of Homeostatic Sleep Signals by Segregated Synaptic Microcircuits of the Drosophila Mushroom Body.
    Sitaraman D; Aso Y; Jin X; Chen N; Felix M; Rubin GM; Nitabach MN
    Curr Biol; 2015 Nov; 25(22):2915-27. PubMed ID: 26455303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metamorphosis of memory circuits in
    Truman JW; Price J; Miyares RL; Lee T
    Elife; 2023 Jan; 12():. PubMed ID: 36695420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concentric zones for pheromone components in the mushroom body calyx of the moth brain.
    Namiki S; Takaguchi M; Seki Y; Kazawa T; Fukushima R; Iwatsuki C; Kanzaki R
    J Comp Neurol; 2013 Apr; 521(5):1073-92. PubMed ID: 22911613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila.
    Aso Y; Sitaraman D; Ichinose T; Kaun KR; Vogt K; Belliart-Guérin G; Plaçais PY; Robie AA; Yamagata N; Schnaitmann C; Rowell WJ; Johnston RM; Ngo TT; Chen N; Korff W; Nitabach MN; Heberlein U; Preat T; Branson KM; Tanimoto H; Rubin GM
    Elife; 2014 Dec; 3():e04580. PubMed ID: 25535794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of a single pair of mushroom body output neurons in
    Ueoka Y; Hiroi M; Abe T; Tabata T
    FEBS Open Bio; 2017 Apr; 7(4):562-576. PubMed ID: 28396840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.