These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37256201)

  • 21. Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface.
    Siuly ; Li Y; Paul Wen P
    Comput Methods Programs Biomed; 2014 Mar; 113(3):767-80. PubMed ID: 24440135
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electroencephalogram-Based Motor Imagery Classification Using Deep Residual Convolutional Networks.
    Huang JS; Liu WS; Yao B; Wang ZX; Chen SF; Sun WF
    Front Neurosci; 2021; 15():774857. PubMed ID: 34867174
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multi-class EEG classification of motor imagery signal by finding optimal time segments and features using SNR-based mutual information.
    Mahmoudi M; Shamsi M
    Australas Phys Eng Sci Med; 2018 Dec; 41(4):957-972. PubMed ID: 30338495
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Attention-Based DSC-ConvLSTM for Multiclass Motor Imagery Classification.
    Li L; Sun N
    Comput Intell Neurosci; 2022; 2022():8187009. PubMed ID: 35571721
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving Motor Imagery-Based Brain-Computer Interface Performance Based on Sensory Stimulation Training: An Approach Focused on Poorly Performing Users.
    Park S; Ha J; Kim DH; Kim L
    Front Neurosci; 2021; 15():732545. PubMed ID: 34803582
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cluster decomposing and multi-objective optimization based-ensemble learning framework for motor imagery-based brain-computer interfaces.
    Zuo C; Jin J; Xu R; Wu L; Liu C; Miao Y; Wang X
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33524961
    [No Abstract]   [Full Text] [Related]  

  • 27. Classification of motor imagery using multisource joint transfer learning.
    Wang F; Ping J; Xu Z; Bi J
    Rev Sci Instrum; 2021 Sep; 92(9):094106. PubMed ID: 34598502
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural and functional correlates of motor imagery BCI performance: Insights from the patterns of fronto-parietal attention network.
    Zhang T; Liu T; Li F; Li M; Liu D; Zhang R; He H; Li P; Gong J; Luo C; Yao D; Xu P
    Neuroimage; 2016 Jul; 134():475-485. PubMed ID: 27103137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-quality training data detection method of EEG signals for motor imagery BCI system.
    Ouyang R; Jin Z; Tang S; Fan C; Wu X
    J Neurosci Methods; 2022 Jul; 376():109607. PubMed ID: 35483505
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of subject-independent and subject-specific EEG-based BCI using LDA and SVM classifiers.
    Dos Santos EM; San-Martin R; Fraga FJ
    Med Biol Eng Comput; 2023 Mar; 61(3):835-845. PubMed ID: 36626112
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of Frontal Theta Rhythms in a Prior Resting State on the Subsequent Motor Imagery Brain-Computer Interface Performance.
    Kang JH; Youn J; Kim SH; Kim J
    Front Neurosci; 2021; 15():663101. PubMed ID: 34483816
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CluSem: Accurate clustering-based ensemble method to predict motor imagery tasks from multi-channel EEG data.
    Miah MO; Muhammod R; Mamun KAA; Farid DM; Kumar S; Sharma A; Dehzangi A
    J Neurosci Methods; 2021 Dec; 364():109373. PubMed ID: 34606773
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An end-to-end CNN with attentional mechanism applied to raw EEG in a BCI classification task.
    Lashgari E; Ott J; Connelly A; Baldi P; Maoz U
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34352734
    [No Abstract]   [Full Text] [Related]  

  • 34. Motor Imagery EEG Classification Using Capsule Networks.
    Ha KW; Jeong JW
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31252557
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Continual Learning of a Transformer-Based Deep Learning Classifier Using an Initial Model from Action Observation EEG Data to Online Motor Imagery Classification.
    Lee PL; Chen SH; Chang TC; Lee WK; Hsu HT; Chang HH
    Bioengineering (Basel); 2023 Feb; 10(2):. PubMed ID: 36829681
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relevance-based channel selection in motor imagery brain-computer interface.
    Nagarajan A; Robinson N; Guan C
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36548997
    [No Abstract]   [Full Text] [Related]  

  • 37. Motor imagery EEG decoding using manifold embedded transfer learning.
    Cai Y; She Q; Ji J; Ma Y; Zhang J; Zhang Y
    J Neurosci Methods; 2022 Mar; 370():109489. PubMed ID: 35090904
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Motor imagery classification method based on relative wavelet packet entropy brain network and improved lasso.
    Wang M; Zhou H; Li X; Chen S; Gao D; Zhang Y
    Front Neurosci; 2023; 17():1113593. PubMed ID: 36816135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Novel Quick-Response Eigenface Analysis Scheme for Brain-Computer Interfaces.
    Choi H; Park J; Yang YM
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957420
    [TBL] [Abstract][Full Text] [Related]  

  • 40. User's Self-Prediction of Performance in Motor Imagery Brain-Computer Interface.
    Ahn M; Cho H; Ahn S; Jun SC
    Front Hum Neurosci; 2018; 12():59. PubMed ID: 29497370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.