These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 37256270)
41. Study of the role of anaerobic metabolism in succinate production by Enterobacter aerogenes. Tajima Y; Kaida K; Hayakawa A; Fukui K; Nishio Y; Hashiguchi K; Fudou R; Matsui K; Usuda Y; Sode K Appl Microbiol Biotechnol; 2014 Sep; 98(18):7803-13. PubMed ID: 24962116 [TBL] [Abstract][Full Text] [Related]
42. Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Litsanov B; Brocker M; Bott M Appl Environ Microbiol; 2012 May; 78(9):3325-37. PubMed ID: 22389371 [TBL] [Abstract][Full Text] [Related]
43. Anodic Respiration of Vibrio natriegens in a Bioelectrochemical System. Gemünde A; Gail J; Holtmann D ChemSusChem; 2023 Aug; 16(16):e202300181. PubMed ID: 37089008 [TBL] [Abstract][Full Text] [Related]
44. Engineering of fast-growing Vibrio natriegens for biosynthesis of poly(3-hydroxybutyrate-co-lactate). Sun X; Shang Y; Zhang B; Guo P; Luo Y; Wu H Bioresour Bioprocess; 2024 Sep; 11(1):86. PubMed ID: 39249183 [TBL] [Abstract][Full Text] [Related]
45. Impact of an energy-conserving strategy on succinate production under weak acidic and anaerobic conditions in Enterobacter aerogenes. Tajima Y; Yamamoto Y; Fukui K; Nishio Y; Hashiguchi K; Usuda Y; Sode K Microb Cell Fact; 2015 Jun; 14():80. PubMed ID: 26063229 [TBL] [Abstract][Full Text] [Related]
46. An ecological study of bacteriophages of Vibrio natriegens. Zachary A Can J Microbiol; 1978 Mar; 24(3):321-4. PubMed ID: 647480 [TBL] [Abstract][Full Text] [Related]
47. Inactivation of the Levansucrase Gene in Paenibacillus polymyxa DSM 365 Diminishes Exopolysaccharide Biosynthesis during 2,3-Butanediol Fermentation. Okonkwo CC; Ujor V; Cornish K; Ezeji TC Appl Environ Microbiol; 2020 Apr; 86(9):. PubMed ID: 32144108 [TBL] [Abstract][Full Text] [Related]
48. Growth and exopolysaccharide production during free and immobilized cell chemostat culture of Lactobacillus rhamnosus RW-9595M. Bergmaier D; Champagne CP; Lacroix C J Appl Microbiol; 2005; 98(2):272-84. PubMed ID: 15659181 [TBL] [Abstract][Full Text] [Related]
49. Expanding the capabilities of MuGENT for large-scale genetic engineering of the fastest-replicating species, Glasgo LD; Lukasiak KL; Zinser ER Microbiol Spectr; 2024 Jun; 12(6):e0396423. PubMed ID: 38667341 [TBL] [Abstract][Full Text] [Related]
50. Improved succinate production from galactose-rich feedstocks by engineered Escherichia coli under anaerobic conditions. Zhu F; San KY; Bennett GN Biotechnol Bioeng; 2020 Apr; 117(4):1082-1091. PubMed ID: 31868221 [TBL] [Abstract][Full Text] [Related]
51. Producing recombinant proteins in Vibrio natriegens. Smith M; Hernández JS; Messing S; Ramakrishnan N; Higgins B; Mehalko J; Perkins S; Wall VE; Grose C; Frank PH; Cregger J; Le PV; Johnson A; Sherekar M; Pagonis M; Drew M; Hong M; Widmeyer SRT; Denson JP; Snead K; Poon I; Waybright T; Champagne A; Esposito D; Jones J; Taylor T; Gillette W Microb Cell Fact; 2024 Jul; 23(1):208. PubMed ID: 39049057 [TBL] [Abstract][Full Text] [Related]
52. Agarose-Degrading Characteristics of a Deep-Sea Bacterium Vibrio Natriegens WPAGA4 and Its Cold-Adapted GH50 Agarase Aga3420. Zhang M; Wang J; Zeng R; Wang D; Wang W; Tong X; Qu W Mar Drugs; 2022 Nov; 20(11):. PubMed ID: 36355015 [TBL] [Abstract][Full Text] [Related]
53. Succinate production from different carbon sources under anaerobic conditions by metabolic engineered Escherichia coli strains. Wang J; Zhu J; Bennett GN; San KY Metab Eng; 2011 May; 13(3):328-35. PubMed ID: 21440082 [TBL] [Abstract][Full Text] [Related]
54. Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions. Lin H; Bennett GN; San KY Biotechnol Bioeng; 2005 Jun; 90(6):775-9. PubMed ID: 15803467 [TBL] [Abstract][Full Text] [Related]
55. MAJOR PRODUCTS OF GLUCOSE DISSIMILATION BY PSEUDOMONAS NATRIEGENS. EAGON RG; CHO HW J Bacteriol; 1965 May; 89(5):1209-11. PubMed ID: 14292987 [TBL] [Abstract][Full Text] [Related]
56. Production of Reverse Transcriptase and DNA Polymerase in Bacterial Expression Systems. Hriňová K; Dlapová J; Kubala B; Kormanová Ľ; Levarski Z; Struhárňanská E; Turňa J; Stuchlík S Bioengineering (Basel); 2024 Jul; 11(7):. PubMed ID: 39061809 [TBL] [Abstract][Full Text] [Related]
57. Enhanced production of exopolysaccharides by fed-batch culture of Ganoderma resinaceum DG-6556. Kim HM; Paik SY; Ra KS; Koo KB; Yun JW; Choi JW J Microbiol; 2006 Apr; 44(2):233-42. PubMed ID: 16728961 [TBL] [Abstract][Full Text] [Related]
59. A novel global transcriptional perturbation target identified by forward genetics reprograms Vibrio natriegens for improving recombinant protein production. Xu J; Yang J; Jiang Y; Wu M; Yang S; Yang L Acta Biochim Biophys Sin (Shanghai); 2021 Aug; 53(9):1124-1133. PubMed ID: 34169308 [TBL] [Abstract][Full Text] [Related]
60. Rapid, high-titer biosynthesis of melanin using the marine bacterium Smith AD; Tschirhart T; Compton J; Hennessa TM; VanArsdale E; Wang Z Front Bioeng Biotechnol; 2023; 11():1239756. PubMed ID: 37781538 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]