BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37256463)

  • 21. Comparative evaluation and design of a G-triplex/thioflavin T-based molecular beacon.
    Gao J; Liu Q; Liu W; Jin Y; Li B
    Analyst; 2021 Apr; 146(8):2567-2573. PubMed ID: 33899063
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel fluorometric method for inorganic pyrophosphatase detection based on G-quadruplex-thioflavin T.
    Zhao H; Ma C; Chen M
    Mol Cell Probes; 2019 Feb; 43():29-33. PubMed ID: 30572018
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thioflavin T as an efficient fluorescence sensor for selective recognition of RNA G-quadruplexes.
    Xu S; Li Q; Xiang J; Yang Q; Sun H; Guan A; Wang L; Liu Y; Yu L; Shi Y; Chen H; Tang Y
    Sci Rep; 2016 Apr; 6():24793. PubMed ID: 27098781
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantification of ATP in cell by fluorescence spectroscopy based on generalized ratio quantitative analysis model.
    Chen Y; Tang Y; Wang H
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec; 263():120170. PubMed ID: 34273897
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A label-free T4 polynucleotide kinase fluorescence sensor based on split dimeric G-quadruplex and ligation-induced dimeric G-quadruplex/thioflavin T conformation.
    Wei L; Kong X; Wang M; Zhang Y; Pan R; Cheng Y; Lv Z; Zhou J; Ming J
    Anal Bioanal Chem; 2022 Nov; 414(27):7923-7933. PubMed ID: 36136111
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Thioflavin T-induced G-Quadruplex Fluorescent Biosensor for Target DNA Detection.
    Zhang XF; Xu HM; Han L; Li NB; Luo HQ
    Anal Sci; 2018; 34(2):149-153. PubMed ID: 29434099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Hg(2+)-mediated label-free fluorescent sensing strategy based on G-quadruplex formation for selective detection of glutathione and cysteine.
    Zhao J; Chen C; Zhang L; Jiang J; Shen G; Yu R
    Analyst; 2013 Mar; 138(6):1713-8. PubMed ID: 23377184
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Label-free detection of exonuclease III activity and its inhibition based on DNA hairpin probe.
    Jiang X; Liu H; Khusbu FY; Ma C; Ping A; Zhang Q; Wu K; Chen M
    Anal Biochem; 2018 Aug; 555():55-58. PubMed ID: 29908861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of Fluorescent Aptasensors Based on G-Quadruplex Quenching Ability for Ochratoxin A and Potassium Ions Detection.
    Yang C; Chu X; Zeng L; Rhouati A; Abbas F; Cui S; Lin D
    Biosensors (Basel); 2022 Jun; 12(6):. PubMed ID: 35735570
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Label-Free G-Quadruplex Aptamer Fluorescence Assay for Ochratoxin A Using a Thioflavin T Probe.
    Wu K; Ma C; Zhao H; He H; Chen H
    Toxins (Basel); 2018 May; 10(5):. PubMed ID: 29757205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dimeric G-Quadruplex: An Effective Nucleic Acid Scaffold for Lighting Up Thioflavin T.
    Jing S; Liu Q; Jin Y; Li B
    Anal Chem; 2021 Jan; 93(3):1333-1341. PubMed ID: 33347269
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Label-Free Fluorescence Molecular Beacon Probes Based on G-Triplex DNA and Thioflavin T for Protein Detection.
    Xue J; Yi J; Zhou H
    Molecules; 2021 May; 26(10):. PubMed ID: 34067563
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA hybridization-induced fluorescence variation in ThT: a new strategy of developing aqueous sensors for MO genes.
    Ma Y; Wu C; Yang W; Gao Z; Chen L
    Analyst; 2022 Apr; 147(8):1631-1640. PubMed ID: 35302559
    [No Abstract]   [Full Text] [Related]  

  • 34. A Facile, Label-free and Versatile Fluorescence Sensing Nanoplatform Based on Titanium Carbide Nanosheets for the Detection of Various Targets.
    Liang M; Lin B; Tang Z; Zhang L; Guo M; Cao Y; Wang Y; Yu Y
    J Fluoresc; 2022 Nov; 32(6):2189-2198. PubMed ID: 36030478
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lighting Up the Thioflavin T by Parallel-Stranded TG(GA) n DNA Homoduplexes.
    Zhu J; Yan Z; Zhou W; Liu C; Wang J; Wang E
    ACS Sens; 2018 Jun; 3(6):1118-1125. PubMed ID: 29749724
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Label-free fluorescent and electrochemical biosensors based on defective G-quadruplexes.
    Zhang J; Wang LL; Hou MF; Luo LP; Liao YJ; Xia YK; Yan A; Weng YP; Zeng LP; Chen JH
    Biosens Bioelectron; 2018 Oct; 118():1-8. PubMed ID: 30041159
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Parallel [TG(GA)
    Liu Q; Jing S; Liu M; Jin Y; Li B
    Analyst; 2019 Dec; 145(1):286-294. PubMed ID: 31750449
    [TBL] [Abstract][Full Text] [Related]  

  • 38. G-quadruplex-based fluorometric biosensor for label-free and homogenous detection of protein acetylation-related enzymes activities.
    Wang H; Li Y; Zhao K; Chen S; Wang Q; Lin B; Nie Z; Yao S
    Biosens Bioelectron; 2017 May; 91():400-407. PubMed ID: 28063389
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Sensitive and Label-Free Pb(II) Fluorescence Sensor Based on a DNAzyme Controlled G-Quadruplex/Thioflavin T Conformation.
    Wen Y; Wang L; Li L; Xu L; Liu G
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27999248
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parallel G-quadruplex-specific fluorescent probe for monitoring DNA structural changes and label-free detection of potassium ion.
    Li T; Wang E; Dong S
    Anal Chem; 2010 Sep; 82(18):7576-80. PubMed ID: 20726508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.