These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 37256556)
1. Investigating the Impact of the Glycolipid Content on Aurein 1.2 Pores in Prokaryotic Model Bilayers: A Coarse-Grain Molecular Dynamics Simulation Study. Balatti GE; Martini MF; Pickholz M J Phys Chem B; 2023 Jun; 127(23):5190-5198. PubMed ID: 37256556 [TBL] [Abstract][Full Text] [Related]
2. A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures. Balatti GE; Martini MF; Pickholz M J Mol Model; 2018 Jul; 24(8):208. PubMed ID: 30019106 [TBL] [Abstract][Full Text] [Related]
3. Differential Stability of Aurein 1.2 Pores in Model Membranes of Two Probiotic Strains. Balatti GE; Domene C; Martini MF; Pickholz M J Chem Inf Model; 2020 Oct; 60(10):5142-5152. PubMed ID: 32815723 [TBL] [Abstract][Full Text] [Related]
4. Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs. Cheng JT; Hale JD; Elliot M; Hancock RE; Straus SK Biophys J; 2009 Jan; 96(2):552-65. PubMed ID: 19167304 [TBL] [Abstract][Full Text] [Related]
5. Differential Interaction of Antimicrobial Peptides with Lipid Structures Studied by Coarse-Grained Molecular Dynamics Simulations. Balatti GE; Ambroggio EE; Fidelio GD; Martini MF; Pickholz M Molecules; 2017 Oct; 22(10):. PubMed ID: 29053635 [TBL] [Abstract][Full Text] [Related]
6. The importance of bacterial membrane composition in the structure and function of aurein 2.2 and selected variants. Cheng JT; Hale JD; Elliott M; Hancock RE; Straus SK Biochim Biophys Acta; 2011 Mar; 1808(3):622-33. PubMed ID: 21144817 [TBL] [Abstract][Full Text] [Related]
7. Free Energy Analysis of Peptide-Induced Pore Formation in Lipid Membranes by Bridging Atomistic and Coarse-Grained Simulations. Richardson JD; Van Lehn RC J Phys Chem B; 2024 Sep; 128(36):8737-8752. PubMed ID: 39207202 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the structure and membrane interaction of the antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs. Pan YL; Cheng JT; Hale J; Pan J; Hancock RE; Straus SK Biophys J; 2007 Apr; 92(8):2854-64. PubMed ID: 17259271 [TBL] [Abstract][Full Text] [Related]
9. Real-time quantitative analysis of lipid disordering by aurein 1.2 during membrane adsorption, destabilisation and lysis. Lee TH; Heng C; Swann MJ; Gehman JD; Separovic F; Aguilar MI Biochim Biophys Acta; 2010 Oct; 1798(10):1977-86. PubMed ID: 20599687 [TBL] [Abstract][Full Text] [Related]
10. Controls and constrains of the membrane disrupting action of Aurein 1.2. Shahmiri M; Enciso M; Mechler A Sci Rep; 2015 Nov; 5():16378. PubMed ID: 26574052 [TBL] [Abstract][Full Text] [Related]
11. Pore formation and the key factors in antibacterial activity of aurein 1.2 and LLAA inside lipid bilayers, a molecular dynamics study. Cheraghi N; Hosseini M; Mohammadinejad S Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):347-356. PubMed ID: 29030244 [TBL] [Abstract][Full Text] [Related]
12. Interaction of aurein 1.2 and its analogue with DPPC lipid bilayer. Sajjadiyan Z; Cheraghi N; Mohammadinejad S; Hassani L J Biol Phys; 2017 Mar; 43(1):127-137. PubMed ID: 28130642 [TBL] [Abstract][Full Text] [Related]
13. The effect of amidation on the behaviour of antimicrobial peptides. Mura M; Wang J; Zhou Y; Pinna M; Zvelindovsky AV; Dennison SR; Phoenix DA Eur Biophys J; 2016 Apr; 45(3):195-207. PubMed ID: 26745958 [TBL] [Abstract][Full Text] [Related]
14. The importance of membrane defects-lessons from simulations. Bennett WF; Tieleman DP Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900 [TBL] [Abstract][Full Text] [Related]
15. The effect of membrane curvature on the conformation of antimicrobial peptides: implications for binding and the mechanism of action. Chen R; Mark AE Eur Biophys J; 2011 Apr; 40(4):545-53. PubMed ID: 21267557 [TBL] [Abstract][Full Text] [Related]
16. Interactions of the Australian tree frog antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with lipid model membranes: differential scanning calorimetric and Fourier transform infrared spectroscopic studies. Seto GW; Marwaha S; Kobewka DM; Lewis RN; Separovic F; McElhaney RN Biochim Biophys Acta; 2007 Nov; 1768(11):2787-800. PubMed ID: 17825246 [TBL] [Abstract][Full Text] [Related]
17. Direct visualization of membrane leakage induced by the antibiotic peptides: maculatin, citropin, and aurein. Ambroggio EE; Separovic F; Bowie JH; Fidelio GD; Bagatolli LA Biophys J; 2005 Sep; 89(3):1874-81. PubMed ID: 15994901 [TBL] [Abstract][Full Text] [Related]
18. Antimicrobial action of the cationic peptide, chrysophsin-3: a coarse-grained molecular dynamics study. Catte A; Wilson MR; Walker M; Oganesyan VS Soft Matter; 2018 Apr; 14(15):2796-2807. PubMed ID: 29595197 [TBL] [Abstract][Full Text] [Related]