These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 37256700)
1. Engineering Climate-Resilient Rice Using a Nanobiostimulant-Based "Stress Training" Strategy. Chen S; Pan Z; Zhao W; Zhou Y; Rui Y; Jiang C; Wang Y; White JC; Zhao L ACS Nano; 2023 Jun; 17(11):10760-10773. PubMed ID: 37256700 [TBL] [Abstract][Full Text] [Related]
2. AgNPs-Triggered Seed Metabolic and Transcriptional Reprogramming Enhanced Rice Salt Tolerance and Blast Resistance. Yan X; Chen S; Pan Z; Zhao W; Rui Y; Zhao L ACS Nano; 2023 Jan; 17(1):492-504. PubMed ID: 36525364 [TBL] [Abstract][Full Text] [Related]
3. Nanobiostimulant action of trigolic formulated zinc sulfide nanoparticles (ZnS-T NPs) on rice seeds by triggering antioxidant defense network and plant growth specific transcription factors. Khepar V; Sidhu A; Mankoo RK; Manchanda P; Sharma AB Plant Physiol Biochem; 2024 May; 210():108605. PubMed ID: 38593487 [TBL] [Abstract][Full Text] [Related]
4. Seed Priming with Reactive Oxygen Species-Generating Nanoparticles Enhanced Maize Tolerance to Multiple Abiotic Stresses. Chen S; Liu H; Yangzong Z; Gardea-Torresdey JL; White JC; Zhao L Environ Sci Technol; 2023 Dec; 57(48):19932-19941. PubMed ID: 37975618 [TBL] [Abstract][Full Text] [Related]
5. Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: An insight from antioxidative enzyme activities and gene expression patterns. Gupta SD; Agarwal A; Pradhan S Ecotoxicol Environ Saf; 2018 Oct; 161():624-633. PubMed ID: 29933132 [TBL] [Abstract][Full Text] [Related]
6. Rice blast fungus (Magnaporthe oryzae) infects Arabidopsis via a mechanism distinct from that required for the infection of rice. Park JY; Jin J; Lee YW; Kang S; Lee YH Plant Physiol; 2009 Jan; 149(1):474-86. PubMed ID: 18987215 [TBL] [Abstract][Full Text] [Related]
7. Differential effectiveness of Serratia plymuthica IC1270-induced systemic resistance against hemibiotrophic and necrotrophic leaf pathogens in rice. De Vleesschauwer D; Chernin L; Höfte MM BMC Plant Biol; 2009 Jan; 9():9. PubMed ID: 19161601 [TBL] [Abstract][Full Text] [Related]
9. Seed priming with calcium chloride enhances stress tolerance in rice seedlings. Wang Y; Shen C; Jiang Q; Wang Z; Gao C; Wang W Plant Sci; 2022 Oct; 323():111381. PubMed ID: 35853520 [TBL] [Abstract][Full Text] [Related]
10. Every Coin Has Two Sides: Reactive Oxygen Species during Rice⁻ Kou Y; Qiu J; Tao Z Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30857220 [TBL] [Abstract][Full Text] [Related]
11. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Mahakham W; Sarmah AK; Maensiri S; Theerakulpisut P Sci Rep; 2017 Aug; 7(1):8263. PubMed ID: 28811584 [TBL] [Abstract][Full Text] [Related]
12. Transcriptional profiling of rice early response to Magnaporthe oryzae identified OsWRKYs as important regulators in rice blast resistance. Wei T; Ou B; Li J; Zhao Y; Guo D; Zhu Y; Chen Z; Gu H; Li C; Qin G; Qu LJ PLoS One; 2013; 8(3):e59720. PubMed ID: 23544090 [TBL] [Abstract][Full Text] [Related]
13. Overexpression of Wang C; Li C; Duan G; Wang Y; Zhang Y; Yang J Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31557947 [TBL] [Abstract][Full Text] [Related]
14. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. Park CH; Chen S; Shirsekar G; Zhou B; Khang CH; Songkumarn P; Afzal AJ; Ning Y; Wang R; Bellizzi M; Valent B; Wang GL Plant Cell; 2012 Nov; 24(11):4748-62. PubMed ID: 23204406 [TBL] [Abstract][Full Text] [Related]
15. Biocompatible silver nanoparticles as nanopriming mediators for improved rice germination and root growth: A transcriptomic perspective. Santhoshkumar R; Hima Parvathy A; Soniya EV Plant Physiol Biochem; 2024 May; 210():108645. PubMed ID: 38663266 [TBL] [Abstract][Full Text] [Related]
16. Activation of ethylene signaling pathways enhances disease resistance by regulating ROS and phytoalexin production in rice. Yang C; Li W; Cao J; Meng F; Yu Y; Huang J; Jiang L; Liu M; Zhang Z; Chen X; Miyamoto K; Yamane H; Zhang J; Chen S; Liu J Plant J; 2017 Jan; 89(2):338-353. PubMed ID: 27701783 [TBL] [Abstract][Full Text] [Related]
17. Serotonin attenuates biotic stress and leads to lesion browning caused by a hypersensitive response to Magnaporthe oryzae penetration in rice. Hayashi K; Fujita Y; Ashizawa T; Suzuki F; Nagamura Y; Hayano-Saito Y Plant J; 2016 Jan; 85(1):46-56. PubMed ID: 26603141 [TBL] [Abstract][Full Text] [Related]
18. Overexpression of MoSM1, encoding for an immunity-inducing protein from Magnaporthe oryzae, in rice confers broad-spectrum resistance against fungal and bacterial diseases. Hong Y; Yang Y; Zhang H; Huang L; Li D; Song F Sci Rep; 2017 Jan; 7():41037. PubMed ID: 28106116 [TBL] [Abstract][Full Text] [Related]
19. The rice (Oryza sativa) blast lesion mimic mutant, blm, may confer resistance to blast pathogens by triggering multiple defense-associated signaling pathways. Jung YH; Lee JH; Agrawal GK; Rakwal R; Kim JA; Shim JK; Lee SK; Jeon JS; Koh HJ; Lee YH; Iwahashi H; Jwa NS Plant Physiol Biochem; 2005 Apr; 43(4):397-406. PubMed ID: 15907692 [TBL] [Abstract][Full Text] [Related]
20. The application of zinc oxide nanoparticles: An effective strategy to protect rice from rice blast and abiotic stresses. Qiu J; Chen Y; Liu Z; Wen H; Jiang N; Shi H; Kou Y Environ Pollut; 2023 Aug; 331(Pt 1):121925. PubMed ID: 37257808 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]