These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 37256875)
1. Ensemble learning-based radiomics with multi-sequence magnetic resonance imaging for benign and malignant soft tissue tumor differentiation. Lee S; Lee SY; Jung JY; Nam Y; Jeon HJ; Jung CK; Shin SH; Chung YG PLoS One; 2023; 18(5):e0286417. PubMed ID: 37256875 [TBL] [Abstract][Full Text] [Related]
2. Radiomics Based on Multimodal MRI for the Differential Diagnosis of Benign and Malignant Breast Lesions. Zhang Q; Peng Y; Liu W; Bai J; Zheng J; Yang X; Zhou L J Magn Reson Imaging; 2020 Aug; 52(2):596-607. PubMed ID: 32061014 [TBL] [Abstract][Full Text] [Related]
3. Radiomics of diffusion-weighted MRI compared to conventional measurement of apparent diffusion-coefficient for differentiation between benign and malignant soft tissue tumors. Lee SE; Jung JY; Nam Y; Lee SY; Park H; Shin SH; Chung YG; Jung CK Sci Rep; 2021 Jul; 11(1):15276. PubMed ID: 34315971 [TBL] [Abstract][Full Text] [Related]
4. Natural Changes in Radiological and Radiomics Features on MRIs of Soft-Tissue Sarcomas Naïve of Treatment: Correlations With Histology and Patients' Outcomes. Fadli D; Kind M; Michot A; Le Loarer F; Crombé A J Magn Reson Imaging; 2022 Jul; 56(1):77-96. PubMed ID: 34939705 [TBL] [Abstract][Full Text] [Related]
5. [Value of radiomics models based on MRI diffusion weighted imaging and apparent diffusion coefficient in differentiating benign and malignant thyroid nodules]. Xu HJ; Yang Q; He P; Luo HH; Deng WM; Liu Z; Luo DH Zhonghua Yi Xue Za Zhi; 2023 Nov; 103(41):3279-3286. PubMed ID: 37926572 [No Abstract] [Full Text] [Related]
6. Performance of Machine Learning Methods Based on Multi-Sequence Textural Parameters Using Magnetic Resonance Imaging and Clinical Information to Differentiate Malignant and Benign Soft Tissue Tumors. Nakagawa M; Nakaura T; Yoshida N; Azuma M; Uetani H; Nagayama Y; Kidoh M; Miyamoto T; Yamashita Y; Hirai T Acad Radiol; 2023 Jan; 30(1):83-92. PubMed ID: 35725692 [TBL] [Abstract][Full Text] [Related]
7. Characterization of renal masses with MRI-based radiomics: assessment of inter-package and inter-observer reproducibility in a prospective pilot study. Al-Mubarak H; Bane O; Gillingham N; Kyriakakos C; Abboud G; Cuevas J; Gonzalez J; Meilika K; Horowitz A; Huang HV; Daza J; Fauveau V; Badani K; Viswanath SE; Taouli B; Lewis S Abdom Radiol (NY); 2024 Oct; 49(10):3464-3475. PubMed ID: 38467854 [TBL] [Abstract][Full Text] [Related]
8. Clinical Breast MRI-based Radiomics for Distinguishing Benign and Malignant Lesions: An Analysis of Sequences and Enhanced Phases. Wang G; Guo Q; Shi D; Zhai H; Luo W; Zhang H; Ren Z; Yan G; Ren K J Magn Reson Imaging; 2024 Sep; 60(3):1178-1189. PubMed ID: 38006286 [TBL] [Abstract][Full Text] [Related]
9. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods. Wang X; Wan Q; Chen H; Li Y; Li X Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795 [TBL] [Abstract][Full Text] [Related]
10. Diagnostic performance of diffusion-weighted (DWI) and dynamic contrast-enhanced (DCE) MRI for the differentiation of benign from malignant soft-tissue tumors. Choi YJ; Lee IS; Song YS; Kim JI; Choi KU; Song JW J Magn Reson Imaging; 2019 Sep; 50(3):798-809. PubMed ID: 30663160 [TBL] [Abstract][Full Text] [Related]
11. A Magnetic Resonance Imaging Radiomics Signature to Distinguish Benign From Malignant Orbital Lesions. Duron L; Heraud A; Charbonneau F; Zmuda M; Savatovsky J; Fournier L; Lecler A Invest Radiol; 2021 Mar; 56(3):173-180. PubMed ID: 32932375 [TBL] [Abstract][Full Text] [Related]
12. Prostate Cancer Differentiation and Aggressiveness: Assessment With a Radiomic-Based Model vs. PI-RADS v2. Chen T; Li M; Gu Y; Zhang Y; Yang S; Wei C; Wu J; Li X; Zhao W; Shen J J Magn Reson Imaging; 2019 Mar; 49(3):875-884. PubMed ID: 30230108 [TBL] [Abstract][Full Text] [Related]
13. Bi-parametric magnetic resonance imaging based radiomics for the identification of benign and malignant prostate lesions: cross-vendor validation. Ji X; Zhang J; Shi W; He D; Bao J; Wei X; Huang Y; Liu Y; Chen JC; Gao X; Tang Y; Xia W Phys Eng Sci Med; 2021 Sep; 44(3):745-754. PubMed ID: 34075559 [TBL] [Abstract][Full Text] [Related]
14. Whole-tumor 3D volumetric MRI-based radiomics approach for distinguishing between benign and malignant soft tissue tumors. Fields BKK; Demirjian NL; Hwang DH; Varghese BA; Cen SY; Lei X; Desai B; Duddalwar V; Matcuk GR Eur Radiol; 2021 Nov; 31(11):8522-8535. PubMed ID: 33893534 [TBL] [Abstract][Full Text] [Related]
15. Preoperative MRI-Based Radiomic Machine-Learning Nomogram May Accurately Distinguish Between Benign and Malignant Soft-Tissue Lesions: A Two-Center Study. Wang H; Zhang J; Bao S; Liu J; Hou F; Huang Y; Chen H; Duan S; Hao D; Liu J J Magn Reson Imaging; 2020 Sep; 52(3):873-882. PubMed ID: 32112598 [TBL] [Abstract][Full Text] [Related]
16. Magnetic resonance radiomic feature performance in pulmonary nodule classification and impact of segmentation variability on radiomics. Koo CW; Kline TL; Yoon JH; Vercnocke AJ; Johnson MP; Suman G; Lu A; Larson NB Br J Radiol; 2022 Dec; 95(1140):20220230. PubMed ID: 36367095 [TBL] [Abstract][Full Text] [Related]
17. An Integrated Radiomics Model Incorporating Diffusion-Weighted Imaging and Zhang L; Yao R; Gao J; Tan D; Yang X; Wen M; Wang J; Xie X; Liao R; Tang Y; Chen S; Li Y Front Oncol; 2021; 11():732704. PubMed ID: 34527594 [TBL] [Abstract][Full Text] [Related]
18. Prediction of High-Risk Cytogenetic Status in Multiple Myeloma Based on Magnetic Resonance Imaging: Utility of Radiomics and Comparison of Machine Learning Methods. Liu J; Zeng P; Guo W; Wang C; Geng Y; Lang N; Yuan H J Magn Reson Imaging; 2021 Oct; 54(4):1303-1311. PubMed ID: 33979466 [TBL] [Abstract][Full Text] [Related]
19. Development and external validation of a multiparametric MRI-based radiomics model for preoperative prediction of microsatellite instability status in rectal cancer: a retrospective multicenter study. Li Z; Zhang J; Zhong Q; Feng Z; Shi Y; Xu L; Zhang R; Yu F; Lv B; Yang T; Huang C; Cui F; Chen F Eur Radiol; 2023 Mar; 33(3):1835-1843. PubMed ID: 36282309 [TBL] [Abstract][Full Text] [Related]
20. Physics-Informed Discretization for Reproducible and Robust Radiomic Feature Extraction Using Quantitative MRI. Zhao W; Hu Z; Kazerooni AF; Körzdörfer G; Nittka M; Davatzikos C; Viswanath SE; Wang X; Badve C; Ma D Invest Radiol; 2024 May; 59(5):359-371. PubMed ID: 37812483 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]