BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37257266)

  • 1. Evaluating the applications and effectiveness of magnetic nanoparticle-based hyperthermia for cancer treatment: A systematic review.
    Farzanegan Z; Tahmasbi M
    Appl Radiat Isot; 2023 Aug; 198():110873. PubMed ID: 37257266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia.
    Wang C; Hsu CH; Li Z; Hwang LP; Lin YC; Chou PT; Lin YY
    Int J Nanomedicine; 2017; 12():6273-6287. PubMed ID: 28894366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cancer hyperthermia using magnetic nanoparticles.
    Kobayashi T
    Biotechnol J; 2011 Nov; 6(11):1342-7. PubMed ID: 22069094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization.
    Mejías R; Hernández Flores P; Talelli M; Tajada-Herráiz JL; Brollo MEF; Portilla Y; Morales MP; Barber DF
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):340-355. PubMed ID: 30525392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer.
    Hervault A; Thanh NT
    Nanoscale; 2014 Oct; 6(20):11553-73. PubMed ID: 25212238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model.
    Rego GNA; Mamani JB; Souza TKF; Nucci MP; Silva HRD; Gamarra LF
    Einstein (Sao Paulo); 2019 Aug; 17(4):eAO4786. PubMed ID: 31390427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Testing the Effects of Magnetic Hyperthermia in 2D Cell Culture.
    Hannon G; Prina-Mello A
    Methods Mol Biol; 2023; 2645():251-261. PubMed ID: 37202625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications.
    Shi D; Sadat ME; Dunn AW; Mast DB
    Nanoscale; 2015 May; 7(18):8209-32. PubMed ID: 25899408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatibility and therapeutic evaluation of magnetic liposomes designed for self-controlled cancer hyperthermia and chemotherapy.
    Gogoi M; Jaiswal MK; Sarma HD; Bahadur D; Banerjee R
    Integr Biol (Camb); 2017 Jun; 9(6):555-565. PubMed ID: 28513646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy.
    Sadhukha T; Wiedmann TS; Panyam J
    Biomaterials; 2013 Jul; 34(21):5163-71. PubMed ID: 23591395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment.
    Silva AC; Oliveira TR; Mamani JB; Malheiros SM; Malavolta L; Pavon LF; Sibov TT; Amaro E; Tannús A; Vidoto EL; Martins MJ; Santos RS; Gamarra LF
    Int J Nanomedicine; 2011; 6():591-603. PubMed ID: 21674016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the optimal choice of the exposure conditions and the nanoparticle features in magnetic nanoparticle hyperthermia.
    Bellizzi G; Bucci OM
    Int J Hyperthermia; 2010; 26(4):389-403. PubMed ID: 20210609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperthermia generated by magnetic nanoparticles for effective treatment of disseminated peritoneal cancer in an orthotopic nude-mouse model.
    Matsumi Y; Kagawa T; Yano S; Tazawa H; Shigeyasu K; Takeda S; Ohara T; Aono H; Hoffman RM; Fujiwara T; Kishimoto H
    Cell Cycle; 2021 Jun; 20(12):1122-1133. PubMed ID: 34110969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review on hyperthermia via nanoparticle-mediated therapy.
    Sohail A; Ahmad Z; Bég OA; Arshad S; Sherin L
    Bull Cancer; 2017 May; 104(5):452-461. PubMed ID: 28385267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intravenous magnetic nanoparticle cancer hyperthermia.
    Huang HS; Hainfeld JF
    Int J Nanomedicine; 2013; 8():2521-32. PubMed ID: 23901270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization and Design of Magnetic Ferrite Nanoparticles with Uniform Tumor Distribution for Highly Sensitive MRI/MPI Performance and Improved Magnetic Hyperthermia Therapy.
    Du Y; Liu X; Liang Q; Liang XJ; Tian J
    Nano Lett; 2019 Jun; 19(6):3618-3626. PubMed ID: 31074627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cancer Therapy; Prospects for Application of Nanoparticles for Magnetic-Based Hyperthermia.
    Rahban D; Doostan M; Salimi A
    Cancer Invest; 2020 Sep; 38(8-9):507-521. PubMed ID: 32870068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailored cancer therapy by magnetic nanoparticle hyperthermia: A virtual scenario simulation method.
    Montes-Robles R; Montanaro H; Capstick M; Ibáñez-Civera J; Masot-Peris R; García-Breijo E; Laguarda-Miró N; Martínez-Máñez R
    Comput Methods Programs Biomed; 2022 Nov; 226():107185. PubMed ID: 36279641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique.
    Johannsen M; Gneveckow U; Eckelt L; Feussner A; Waldöfner N; Scholz R; Deger S; Wust P; Loening SA; Jordan A
    Int J Hyperthermia; 2005 Nov; 21(7):637-47. PubMed ID: 16304715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review on numerical modeling for magnetic nanoparticle hyperthermia: Progress and challenges.
    Raouf I; Khalid S; Khan A; Lee J; Kim HS; Kim MH
    J Therm Biol; 2020 Jul; 91():102644. PubMed ID: 32716885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.