These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37257399)

  • 1. CTDN (Convolutional Temporal Based Deep- Neural Network): An Improvised Stacked Hybrid Computational Approach for Anticancer Drug Response Prediction.
    Singh DP; Kaushik B
    Comput Biol Chem; 2023 Aug; 105():107868. PubMed ID: 37257399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of anticancer drug sensitivity using an interpretable model guided by deep learning.
    Pang W; Chen M; Qin Y
    BMC Bioinformatics; 2024 May; 25(1):182. PubMed ID: 38724920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting cancer drug response using parallel heterogeneous graph convolutional networks with neighborhood interactions.
    Peng W; Liu H; Dai W; Yu N; Wang J
    Bioinformatics; 2022 Sep; 38(19):4546-4553. PubMed ID: 35997568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ensembled machine learning framework for drug sensitivity prediction.
    Sharma A; Rani R
    IET Syst Biol; 2020 Feb; 14(1):39-46. PubMed ID: 31931480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. deepNEC: a novel alignment-free tool for the identification and classification of nitrogen biochemical network-related enzymes using deep learning.
    Duhan N; Norton JM; Kaundal R
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35325031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding.
    Yuan Q; Chen K; Yu Y; Le NQK; Chua MCH
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving prediction of phenotypic drug response on cancer cell lines using deep convolutional network.
    Liu P; Li H; Li S; Leung KS
    BMC Bioinformatics; 2019 Jul; 20(1):408. PubMed ID: 31357929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-evoluting framework of deep convolutional neural network for multilocus protein subcellular localization.
    Cong H; Liu H; Chen Y; Cao Y
    Med Biol Eng Comput; 2020 Dec; 58(12):3017-3038. PubMed ID: 33078303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving drug response prediction based on two-space graph convolution.
    Peng W; Chen T; Liu H; Dai W; Yu N; Lan W
    Comput Biol Med; 2023 May; 158():106859. PubMed ID: 37023539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep-Resp-Forest: A deep forest model to predict anti-cancer drug response.
    Su R; Liu X; Wei L; Zou Q
    Methods; 2019 Aug; 166():91-102. PubMed ID: 30772464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diagnosis and classification of cancer using hybrid model based on ReliefF and convolutional neural network.
    Kilicarslan S; Adem K; Celik M
    Med Hypotheses; 2020 Apr; 137():109577. PubMed ID: 31991364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auto-HMM-LMF: feature selection based method for prediction of drug response via autoencoder and hidden Markov model.
    Emdadi A; Eslahchi C
    BMC Bioinformatics; 2021 Jan; 22(1):33. PubMed ID: 33509079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward Explainable Anticancer Compound Sensitivity Prediction via Multimodal Attention-Based Convolutional Encoders.
    Manica M; Oskooei A; Born J; Subramanian V; Sáez-Rodríguez J; Rodríguez Martínez M
    Mol Pharm; 2019 Dec; 16(12):4797-4806. PubMed ID: 31618586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNN-PNN: A parallel deep neural network model to improve anticancer drug sensitivity.
    Chen S; Yang Y; Zhou H; Sun Q; Su R
    Methods; 2023 Jan; 209():1-9. PubMed ID: 36410694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepStack-DTIs: Predicting Drug-Target Interactions Using LightGBM Feature Selection and Deep-Stacked Ensemble Classifier.
    Zhang Y; Jiang Z; Chen C; Wei Q; Gu H; Yu B
    Interdiscip Sci; 2022 Jun; 14(2):311-330. PubMed ID: 34731411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CNN-Siam: multimodal siamese CNN-based deep learning approach for drug‒drug interaction prediction.
    Yang Z; Tong K; Jin S; Wang S; Yang C; Jiang F
    BMC Bioinformatics; 2023 Mar; 24(1):110. PubMed ID: 36959539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network-based drug sensitivity prediction.
    Ahmed KT; Park S; Jiang Q; Yeu Y; Hwang T; Zhang W
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):193. PubMed ID: 33371891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research and Application of Ancient Chinese Pattern Restoration Based on Deep Convolutional Neural Network.
    Fu X
    Comput Intell Neurosci; 2021; 2021():2691346. PubMed ID: 34925485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A universal deep learning approach for modeling the flow of patients under different severities.
    Jiang S; Chin KS; Tsui KL
    Comput Methods Programs Biomed; 2018 Feb; 154():191-203. PubMed ID: 29249343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of Protein-ATP Binding Residues Based on Ensemble of Deep Convolutional Neural Networks and LightGBM Algorithm.
    Song J; Liu G; Jiang J; Zhang P; Liang Y
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33477866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.